【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當DE=AE時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是( 。
A.②③B.②④C.①③④D.②③④
【答案】D
【解析】
根據角平分線性質求出DE=DF,證△AED≌△AFD,推出AE=AF,再一一判斷即可.
解:根據已知條件不能推出OA=OD,∴①錯誤;
∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠BAC,
∴AD⊥EF,∴②正確;
∵∠BAC=90°,∠AED=∠AFD=90°,
∴四邊形AEDF是矩形,
∵AE=AF,
∴四邊形AEDF是正方形,∴③正確;
∵AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,∴④正確;
∴②③④正確,
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,經過點A(6,0)的直線y=kx﹣3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.
(1)求點B的坐標;
(2)當△OPB是直角三角形時,求點P運動的時間;
(3)當BP平分△OAB的面積時,直線BP與y軸交于點D,求線段BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在國慶節(jié)社會實踐活動中,鹽城某校甲、乙、丙三位同學一起調查了高峰時段鹽靖高速、鹽洛高速和沈海高速的車流量(每小時通過觀測點的汽車車輛數),三位同學匯報高峰時段的車流量情況如下:
甲同學說:“鹽靖高速車流量為每小時2000輛.”
乙同學說:“沈海高速的車流量比鹽洛高速的車流量每小時多400輛.”
丙同學說:“鹽洛高速車流量的5倍與沈海高速車流量的差是鹽靖高速車流量的2倍.”
請你根據他們所提供的信息,求出高峰時段鹽洛高速和沈海高速的車流量分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個頂點A、B、C在以O為圓心的半圓上,過點C作CD⊥AB,分別交AB、AO的延長線于點D、E,AE交半圓O于點F,連接CF.
(1)判斷直線DE與半圓O的位置關系,并說明理由;
(2)①求證:CF=OC;
②若半圓O的半徑為12,求陰影部分的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內作等腰Rt△ABC,∠BAC=90°.
(1)直接寫出A、B兩點的坐標,并求線段AB的長;
(2)求過B、C兩點的直線的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,邊長為1的正方形ABCD中,AC 、DB交于點H.DE平分∠ADB,交AC于點E.聯結BE并延長,交邊AD于點F.
(1)求證:DC=EC;
(2)求△EAF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的是常見的工具“人字梯”,量得“人字梯”的一側OC=OD=2.5米,
(1)若CD=1.4米,求梯子頂端O離地面的高度;
(2)《建筑施工高處作業(yè)安全技術規(guī)范》規(guī)定:使用“人字梯”時,上部夾角(∠AOB)以35°~45°為宜,鉸鏈必須牢固,并應有可靠的拉撐措施.如圖,小明在人字梯的一側A、B處系上一根繩子確保用梯安全,他測得OA=OB=2米,在A、B處打結各需要0.4米的繩子,請你幫小明計算一下,他需要的繩子的長度應該在什么范圍內.(結果精確到0.1米,參考數據:sin17.5°≈0.30,cos17.5°≈0.95,tan17. °5≈0.32,sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風箏,風箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風箏所在點G與建筑物頂點D及風箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風箏線與水平線夾角為37°.
(1)求風箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風箏?
(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com