【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽.某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級“經(jīng)典誦讀”比賽活動,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列問題:

(1)該校七(1)班共有名學(xué)生;扇形統(tǒng)計(jì)圖中C等級所對應(yīng)扇形的圓心角等于度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

【答案】
(1)50;144
(2)

解:


(3)

解:列表為:

男1

男2

女1

女2

男1

﹣﹣

男2男1

女1男1

女2男1

男2

男1男2

﹣﹣

女1男2

女2男2

女1

男1女1

男2女1

﹣﹣

女2女1

女2

男1女2

男2女2

女1女2

﹣﹣

由上表可知,從4名學(xué)生中任意選取2名學(xué)生共有12種等可能結(jié)果,其中恰好選到1名男生和1名女生的結(jié)果有8種,

∴恰好選到1名男生和1名女生的概率P= =

故答案為:50、144.


【解析】解:(1)4÷8%=50(名)
20÷50×360
=0.4×360
=144°(度)
∴該校七(1)班共有50名學(xué)生;扇形統(tǒng)計(jì)圖中C等級所對應(yīng)扇形的圓心角等于144度.(2)50﹣(4+20+8+2)
=50﹣34
=16(名)
(1)首先用A等級的學(xué)生人數(shù)除以A等級的人數(shù)占的百分率,求出該校七(1)班共有多少名學(xué)生;然后用C等級的人數(shù)除以該校七(1)班的學(xué)生總?cè)藬?shù),求出C等級的人數(shù)占的百分率,再用它乘360,求出扇形統(tǒng)計(jì)圖中C等級所對應(yīng)扇形的圓心角等于多少度即可.(2)用該校七(1)班的學(xué)生總?cè)藬?shù)減去A、C、D、E等級的人數(shù),求出B等級的人數(shù)是多少,并補(bǔ)全條形統(tǒng)計(jì)圖即可.(3)若A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,應(yīng)用列表法的方法,求出恰好選到1名男生和1名女生的概率是多少即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC的中點(diǎn),AE∥BC,DE∥AB.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(﹣2,3)和點(diǎn)B(m,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直線x=1上有一點(diǎn)P,反比例函數(shù)圖象上有一點(diǎn)Q,若以A、B、P、Q為頂點(diǎn)的四邊形是以AB為邊的平行四邊形,直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC的周長為30,其中一個內(nèi)角的余弦值為 ,則其腰長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是襄陽“創(chuàng)建文明城市”工作的第二年,為了更好地做好“創(chuàng)建文明城市”工作,市教育局相關(guān)部門對某中學(xué)學(xué)生“創(chuàng)文”的知曉率,采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”,“比校了解”,“基本了解”,和“不了解”四個等級.小輝根據(jù)調(diào)查結(jié)果繪制了如圖所示的統(tǒng)計(jì)圖,請根據(jù)提供的信息回答問題:
(1)本次調(diào)查中,樣本容量是;
(2)扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)的圓心角的度數(shù)是;在該校2000名學(xué)生中隨機(jī)提問一名學(xué)生,對“創(chuàng)文”不了解的概率估計(jì)值為;
(3)請補(bǔ)全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具專柜要經(jīng)營一種新上市的兒童玩具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出專柜銷售這種玩具,每天所得的銷售利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該玩具每天的銷售利潤最大;
(3)專柜結(jié)合上述情況,設(shè)計(jì)了A、B兩種營銷方案: 方案A:該玩具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件玩具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且BD=CE,AD,BE相交于點(diǎn)F.
(1)求證:AD=BE;
(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子里裝有兩個紅球和兩個黃球,它們除顏色外都相同,隨機(jī)從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,兩次都摸到黃球的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,E為BC上一點(diǎn),CE=5,F(xiàn)為DE的中點(diǎn).若△CEF的周長為18,則OF的長為

查看答案和解析>>

同步練習(xí)冊答案