【題目】如圖1,將一張長(zhǎng)方形的紙對(duì)折一次,然后沿折痕剪開,可以將這張紙分為兩部分:如圖2,如果對(duì)折兩次,然后沿最后一次的折痕剪開,可以將這張紙分為三部分;用同樣的操作方法繼續(xù)下去,如果對(duì)折4次,然后沿最后一次的折痕剪開,則可以將它剪成_______部分;如果對(duì)折次,沿最后一次的折痕剪開,則可以將它剪成_______ 部分.(最后一空用含的式子表示)

(圖1) (圖2)

【答案】; .

【解析】

對(duì)前三次對(duì)折分析找出與折疊次數(shù)之間的關(guān)系,求出第4次剪開后,會(huì)分成幾部分;再根據(jù)對(duì)折規(guī)律求出對(duì)折n次得到的部分?jǐn)?shù)即可.

將一張長(zhǎng)方形的紙對(duì)折一次,然后沿折痕剪開,可以將這張紙分為兩部分:

如果對(duì)折兩次,然后沿最后一次的折痕剪開,可以將這張紙分為三部分;

如果對(duì)折三次,然后沿最后一次的折痕剪開,可以將這張紙分為五部分;

則對(duì)折4次,然后沿最后一次的折痕剪開,則可以將它剪成部分;

如果對(duì)折次,沿最后一次的折痕剪開,則可以將它剪成部分.

故答案為:(1). ; (2). .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問(wèn):(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在周長(zhǎng)為12的菱形ABCD,AE=1,AF=2,P為對(duì)角線BD上一動(dòng)點(diǎn),EP+FP的最小值為( )

A. 5 B. 8 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來(lái)出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植﹣畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點(diǎn)D,點(diǎn)E在⊙O上,且DE=DA,AE與BC相交于點(diǎn)F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張第一次用180元購(gòu)買了8套兒童服裝,以一定價(jià)格出售.如果以每套兒童服裝80元的價(jià)格為標(biāo)準(zhǔn),超出的記作整數(shù),不足的記作負(fù)數(shù),記錄如下(單位:元):

請(qǐng)通過(guò)計(jì)算說(shuō)明

(1)小張賣完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?

(2)每套兒童服裝的平均售價(jià)是多少元?

(3)小張第二次用第一次的進(jìn)價(jià)再次購(gòu)買900元的兒童服裝,如果他預(yù)計(jì)第二次每套服裝的平均售價(jià)75元,按他的預(yù)計(jì)第二次售價(jià)可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)、、、…、的每個(gè)數(shù)字前添上“+”“-”,使得算出的結(jié)果是一個(gè)最小的非負(fù)數(shù),請(qǐng)寫出符合條件的式子:________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織學(xué)生到距離學(xué)校6千米的科技館去參觀,小華因事沒(méi)能乘上學(xué)校的包車,于是準(zhǔn)備在學(xué)校門口改乘出租車去科技館,出租車收費(fèi)標(biāo)準(zhǔn)有兩種類型,如下表:

里程

甲類收費(fèi)(元)

乙類收費(fèi)(元)

3千米以下(包含3千米)

7.00

6.00

3千米以上,每增加1千米

1.60

1.40

(1)設(shè)出租車行駛的里程為x千米(x取正整數(shù)),分別寫出兩種類型的總收費(fèi)(用含x的代數(shù)式表示);

(2)小華身上僅有11元,他乘出租車到科技館車費(fèi)夠不夠請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算: ;
(2)化簡(jiǎn):(a+3)2+a(4﹣a)

查看答案和解析>>

同步練習(xí)冊(cè)答案