如圖所示,△ABC的外接圓圓心O在AB上,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的邊ND上的中線.
(1)求證:AB=DN;
(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若PC=5,CD=8,求線段MN的長(zhǎng).
(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°=∠NCD,
∵DM⊥AB,
∴∠AMN=90°,
∴∠ABC+∠A=∠ABC+∠D=90°,
∴∠A=∠D,
在△ABC和△DNC中,
∠A=∠D
AC=CD
∠ACB=∠NCD
,
∴△ABC≌△DNC(ASA),
∴AB=DN;
(2)CP是⊙O的切線,理由為:
證明:連接OC,
∵CP是△CDN的邊ND上的中線,∠NCD=90°,
∴PC=PN=
1
2
DN,
∴∠PCN=∠PNC,
∵∠ANM=∠PNC,
∴∠ANM=∠PCN,
∵OA=OC,
∴∠A=∠ACO,
∵∠A+∠ANM=90°,
∴∠ACO+∠PCN=90°,
∴∠PCO=90°,
∴CP是⊙O的切線;
(3)∵PC=5,
∴DN=2PC=10,
∵△ABC≌△DNC,
∴CN=CB,AC=CD=8,AB=DN=10,
∴CN=BC=
AB2-AC2
=6,
∴AN=AC-CN=2,
∵sinA=
MN
AN
=
BC
AB
,
MN
2
=
6
10

∴MN=
6
5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,P為AB延長(zhǎng)線上的一點(diǎn),PC是⊙O的切線,C為切點(diǎn),∠A=35°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直角梯形ABCD中,ADBC,∠B=90°,BC=2AB=2AD=4.以AB為直徑作⊙O,點(diǎn)P在梯形內(nèi)的半圓弧上運(yùn)動(dòng),則△CPD的最小面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙O的割線PAB交⊙O于A、B兩點(diǎn),PO與⊙O交于點(diǎn)C,且PA=AB=6cm,PO=12cm,
(Ⅰ)求⊙O的半徑;
(Ⅱ)求△PBO的面積.(結(jié)果可帶根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為
2
,A、B兩點(diǎn)在⊙O上,切線AQ和BQ相交于Q,P是AB延長(zhǎng)線上任一點(diǎn),QS⊥OP于S,則OP•OS=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的弦ADBC,過(guò)點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,ACDE交BD于點(diǎn)H,DO及延長(zhǎng)線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,AB=AC=10,BC=12,以A為圓心,分別以下列長(zhǎng)為半徑作圓,請(qǐng)你判定⊙A與直線BC的位置關(guān)系.(1)6;(2)8;(3)12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等腰三角形ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于E,連接AD,下列結(jié)論:①CD=BD;②DE為⊙O的切線;③△ADE△ACD;④AD2=AE•AC,其中正確結(jié)論個(gè)數(shù)( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)若AB=2,∠P=30°,求AP的長(zhǎng);
(2)若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案