如圖,等腰三角形ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于E,連接AD,下列結(jié)論:①CD=BD;②DE為⊙O的切線;③△ADE△ACD;④AD2=AE•AC,其中正確結(jié)論個(gè)數(shù)( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

∵AC為圓的直徑,
∴∠ADC=90°,
∴AD⊥BC,
又∵AB=AC,
∴BD=CD;
故選項(xiàng)①正確;
連接OD,∵D為BC中點(diǎn),O為AB中點(diǎn),
∴DO為△ABC的中位線,
∴ODAC,
又DE⊥AC,∴∠DEA=90°,
∴∠ODE=90°,
∴DE為圓O的切線,選項(xiàng)②正確;
由D為BC中點(diǎn),且AD⊥BC,
∴AD垂直平分BC,
∴AC=AB,又OA=
1
2
AB,
∴OA=
1
2
AC,
∵∠DAC=∠EAD,∠DEA=∠CDA=90°,
∴△ADE△ACD,選項(xiàng)③正確;
AD
AC
=
AE
AD
,即AD2=AE•AB,選項(xiàng)④正確;
則正確結(jié)論的個(gè)數(shù)為4個(gè).
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在半徑OB延長(zhǎng)線上,∠BCD=∠A=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OC⊥AB,AC=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,△ABC的外接圓圓心O在AB上,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的邊ND上的中線.
(1)求證:AB=DN;
(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若PC=5,CD=8,求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠ACB=60°,半徑為2的⊙0切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時(shí),圓心O平移的距離為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在半徑為4的⊙O中,點(diǎn)C是以AB為直徑的半圓的中點(diǎn),OD⊥AC,垂足為D,點(diǎn)E是射線AB上的任意一點(diǎn),DFAB,DF與CE相交于點(diǎn)F,設(shè)EF=x,DF=y.
(1)如圖1,當(dāng)點(diǎn)E在射線OB上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域;
(2)如圖2,當(dāng)點(diǎn)F在⊙O上時(shí),求線段DF的長(zhǎng);
(3)如果以點(diǎn)E為圓心、EF為半徑的圓與⊙O相切,求線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,BC=3,AC=4,D為AC上一點(diǎn),以CD為直徑的⊙O切AB于點(diǎn)E.求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O與⊙O′內(nèi)切點(diǎn)P,⊙O的弦AB切⊙O′于點(diǎn)C,且ABOO′.若陰影部分面積為4π,則AB的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=BC,過(guò)點(diǎn)A的切線與OC的延長(zhǎng)線相交于點(diǎn)D,∠BAC=75°,CD=
3
,則AD的長(zhǎng)為( 。
A.2
3
B.3C.3
3
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案