【題目】甲、乙兩個(gè)工程隊(duì)共同開鑿一條隧道,甲隊(duì)按一定的工作效率先施工,一段時(shí)間后,乙隊(duì)從隧道的另一端按一定的工作效率加入施工,中途乙隊(duì)遇到碎石層,工作效率降低,當(dāng)乙隊(duì)完成碎石層時(shí)恰好隧道被打通,此時(shí)甲隊(duì)工作了天,設(shè)甲、乙兩隊(duì)各自開鑿隧道的長度為(米),工作時(shí)間為(天),與之間的函數(shù)圖像如圖所示,下列說法:
①甲每天開鑿隧道米;
②這條隧道總長為米;
③當(dāng)乙遇上碎石層時(shí),甲恰好開鑿隧道米,
④若乙在甲施工天后開始施工,則乙在遇到碎石層之前的施工速度比之后快米/天,其中正確的有__________.
【答案】①③④
【解析】試題解析:①720÷36=20,
∴甲隊(duì)的工作效率為20米/天,故①正確;
②20×50+16×50+144=1944;
∴這條隧道的總長度為1944米,故②錯(cuò)誤;
③由圖象知,乙在甲工作21天旦遇到碎石層,
故甲開鑿隧道的長度為:20×21=420(米),故③正確;
④乙在遇到碎石層之前的施工速度為:480÷(21-5)=30(米/天)
在遇到碎石層之后的施工速度為:(720-480)÷(36-21)=16(米/天)
∴30-16=14(米/天)
即:乙在甲施工天后開始施工,則乙在遇到碎石層之前的施工速度比之后快米/天,故④正確.
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中,能應(yīng)用平方差公式進(jìn)行計(jì)算的是( )
A.(a+b)(a+b)B.(x+2y)(x-2y)C.(a-3)(3-a)D.(2a-b)(-2a+3b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年夏季,湖南省部分地區(qū)發(fā)生了罕見的旱災(zāi),連續(xù)幾個(gè)月無有效降水.為抗旱救災(zāi),駐湘某部計(jì)劃為駐地村民新建水渠3600米,為使水渠能盡快投入使用,實(shí)際工作效率是原計(jì)劃工作效率的1.8倍,結(jié)果提前20天完成修水渠任務(wù).求實(shí)際每天修水渠多少米?(列方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC、PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(-1,2),且過點(diǎn)(0, ).
(1)求二次函數(shù)的解析式,并在圖中畫出它的圖象;
(2)求證:對(duì)任意實(shí)數(shù)m,點(diǎn)M(m,-m2)都不在這個(gè)二次函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com