【題目】已知A,B兩點(diǎn)在直線(xiàn)m上,C,D兩點(diǎn)在直線(xiàn)n上,∠BAD=α,∠BCD=β.
(1)如圖1,若∠BAD=∠ADC,求證∠ABC=∠BCD.
(2)如圖2,m∥n,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,∠BAD與∠DEB的角平分線(xiàn)相交于點(diǎn)P,求∠P(用α,β的式子表示)
(3)在(2)的條件下,若點(diǎn)A沿直線(xiàn)m向右運(yùn)動(dòng),且不與B點(diǎn)重合,則∠APE=。用α,β的式子表示,不寫(xiě)證明過(guò)程).
【答案】(1)見(jiàn)解析;(2)∠P=α+β-45°;(3)α+β-45°或135°+β-α
【解析】
(1)利用平行線(xiàn)的判定和性質(zhì)即可證明;
(2)根據(jù)條件求出∠DEP=45°,∠BAP=∠PAD=α,設(shè)AP,BC交于N,推出∠ANC=∠BAP+∠ABC=∠P+∠BEP,從而得到∠P的度數(shù);
(3)分點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)A在點(diǎn)B右側(cè)兩種情況,參照(2)中過(guò)程,分別求出∠APE的度數(shù)即可.
解:(1)∵∠BAD=∠ADC,
∴m∥n,
∴∠ABC=∠BCD;
(2)∵DE⊥BC,
∴∠DEC=∠DEB=90°,
∵∠BAD與∠DEB的角平分線(xiàn)相交于點(diǎn)P,
∴∠DEP=∠BEP=∠DEB=45°,
∠BAP=∠PAD=∠BAD=α,
∵m∥n,
∴∠ABC=∠BCD=β,
設(shè)AP,BC交于N,
∵∠ANC=∠BAP+∠ABC=∠P+∠BEP,
∴α+β=∠P+45°,
∴∠P=α+β-45°;
(3)若點(diǎn)A在點(diǎn)B左側(cè),由(2)得:
∠APE=α+β-45°;
若點(diǎn)A在點(diǎn)B右側(cè),延長(zhǎng)EP,交AD于Q,
∴∠APE=∠PAQ+∠AQP,
∵AP平分∠BAD,
∴∠PAQ=α,
由(2)得∠BEP=∠DEP=45°,
∴∠AQP=∠DEP+∠ADE=45°+∠ADE,
而∠EDC=90°-∠BCD=90°-β,
∴∠ADE=180°-(90°-β)-α=90°+β-α,
∴∠AQP=45°+90°+β-α,
∴∠APE=∠PAQ+∠AQP=α+45°+90°+β-α=135°+β-α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過(guò)A、B兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸,垂足為C,過(guò)點(diǎn)B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點(diǎn)E,若OC=CD,四邊形BDCE的面積為1,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名同學(xué)某學(xué)期的四次數(shù)學(xué)測(cè)試成績(jī)(單位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
據(jù)上表計(jì)算,甲、乙兩名同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的方差分別為S甲2=17、S乙2=25,下列說(shuō)法正確的是( )
A.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的平均數(shù)是89分
B.甲同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的中位數(shù)是90分
C.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)的眾數(shù)是80分
D.乙同學(xué)四次數(shù)學(xué)測(cè)試成績(jī)較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,AC∥BE,∠MAC=40,∠D=50°,CH平分∠ACD,BH平分∠ABD,
(1)求∠EBH的角度
(2)求∠BHC的角度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直角∠EPF的頂點(diǎn)和正方形ABCD的頂點(diǎn)C重合,兩直角邊PE,PF分別和AB,AD所在的直線(xiàn)交于點(diǎn)E和F.易得△PBE≌△PDF,故結(jié)論“PE=PF”成立;
(1)如圖2,若點(diǎn)P在正方形ABCD的對(duì)角線(xiàn)AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?說(shuō)明理由;
(2)如圖(3)將(2)中正方形ABCD改為矩形ABCD其他條件不變,若AB=m,BC=n,直接寫(xiě)出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校新到一批理、化、生實(shí)驗(yàn)器材需要整理,若實(shí)驗(yàn)管理員李老師一人單獨(dú)整理需要40分鐘完成,現(xiàn)在李老師與工人王師傅共同整理20分鐘后,李老師因事外出,王師傅再單獨(dú)整理了20分鐘才完成任務(wù).
(1)王師傅單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘?
(2)學(xué)校要求王師傅的工作時(shí)間不能超過(guò)30分鐘,要完成整理這批器材,李老師至少要工作多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,F、E分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),分別與BA、CD的延長(zhǎng)線(xiàn)交于點(diǎn)M、N,則∠BME=∠CNE,求證:AB=CD;(提示取BD的中點(diǎn)H,連結(jié)FH,HE作輔助線(xiàn))
(2)如圖2,在△ABC中,且O是BC邊的中點(diǎn),D是AC邊上一點(diǎn),E是AD的中點(diǎn),直線(xiàn)OE交BA的延長(zhǎng)線(xiàn)于點(diǎn)G,若AB=DC=5,∠OEC=60°,求OE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿直線(xiàn)BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F,若AB=4,BC=6,則FD的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com