【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F,若AB=4,BC=6,則FD的長為 .
【答案】
【解析】解:∵E是AD的中點,
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中, ,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設(shè)DF=x,則BF=4+x,CF=4﹣x,
在Rt△BCF中,62+(4﹣x)2=(4+x)2,
解得x= .
∴FD= .
所以答案是: .
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩點在直線m上,C,D兩點在直線n上,∠BAD=α,∠BCD=β.
(1)如圖1,若∠BAD=∠ADC,求證∠ABC=∠BCD.
(2)如圖2,m∥n,過點D作DE⊥BC于點E,∠BAD與∠DEB的角平分線相交于點P,求∠P(用α,β的式子表示)
(3)在(2)的條件下,若點A沿直線m向右運動,且不與B點重合,則∠APE=。用α,β的式子表示,不寫證明過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照下面的步驟計算:
任意寫一個三位數(shù),百位數(shù)字比個數(shù)數(shù)字大3交換差的百位數(shù)字與個位數(shù)字用大數(shù)減去小數(shù)交換它的百位數(shù)字與個位數(shù)字做加法
問題:(1)用不同的三位數(shù)再做兩次,結(jié)果都是1089嗎?
(2)你能解釋其中的道理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題中為真命題的是( )
① 的算術(shù)平方根是4;
②若ma2>na2 , 則m>n;
③正八邊形的一個內(nèi)角的度數(shù)是135°;
④對角線互相垂直平分的四邊形是菱形;
⑤平分弦的直徑垂直于弦.
A.①③④
B.②③⑤
C.①④⑤
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的邊上一點,連結(jié),此時有結(jié)論,請解答下列問題:
(1)當(dāng)是邊上的中點時,的面積 的面積(填“>”“<”或“=”).
(2)如圖1,點分別為邊上的點,連結(jié)交于點,若、、的面積分別為5,8,10,則的面積是 (直接寫出結(jié)論).
(3)如圖2,若點分別是的邊上的中點,且,求四邊形的面積.可以用如下方法:連結(jié),由得,同理:,設(shè),,則,,由題意得,,可列方程組為:,解得,可得四邊形的面積為20.解答下面問題:
如圖3,是的三等分點,是的三等分點,與交于,且,請計算四邊形的面積,并說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,D是△ABC的邊BC上的一點,且CD=AB,∠BDA=∠BAD,AE是△ABD的中線.
⑴若∠B=60°,求∠C的值;
⑵求證:AD是∠EAC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 的坐標(biāo)為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(在 左面),且.
(1)如圖,連接,當(dāng) 時,試說明:.
(2)過點 作軸,垂足為,當(dāng)時,將沿所在直線翻折,翻折后邊 交 軸于點 ,求點 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E分別在線段AB,AC上,CD與BE相交于點O,已知AB=AC,那么添加下列一個條件后,仍無法判定的是( )
A. B. AD=AE C. BE=CD D. BD=CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為O.以點C為圓心,BC為半徑作弧AB,過點O作AC的平行線交兩弧于點D、E,則陰影部分的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com