如圖1,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),且P(-1,-2)為雙曲線上的一點(diǎn),Q為坐標(biāo)平面上一動(dòng)點(diǎn),PA垂直于x軸,QB垂直于y軸,垂足分別是A、B.
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)當(dāng)點(diǎn)Q在直線MO上運(yùn)動(dòng)時(shí),直線MO上是否存在這樣的點(diǎn)Q,使得△OBQ與△OAP面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由;
(3)如圖2,當(dāng)點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng)時(shí),作以O(shè)P、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.
【答案】分析:(1)正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),設(shè)出正比例函數(shù)和反比例函數(shù)的解析式,運(yùn)用待定系數(shù)法可求它們解析式;
(2)因?yàn)镻(-1,-2)為雙曲線Y=上的一點(diǎn),所以△OBQ、△OAP面積為1,依據(jù)反比例函數(shù)的圖象和性質(zhì),點(diǎn)Q在雙曲線上,即符合條件的點(diǎn)存在,是正比例函數(shù)和反比例函數(shù)的圖象的交點(diǎn);
(3)因?yàn)樗倪呅蜲PCQ是平行四邊形,所以O(shè)P=CQ,OQ=PC,而點(diǎn)P(-1,-2)是定點(diǎn),所以O(shè)P的長(zhǎng)也是定長(zhǎng),所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值.
解答:解:(1)設(shè)正比例函數(shù)解析式為y=kx,
將點(diǎn)M(-2,-1)坐標(biāo)代入得k=,所以正比例函數(shù)解析式為y=x,
同樣可得,反比例函數(shù)解析式為;

(2)當(dāng)點(diǎn)Q在直線OM上運(yùn)動(dòng)時(shí),
設(shè)點(diǎn)Q的坐標(biāo)為Q(m,m),
于是S△OBQ=OB•BQ=×m×m=m2,
而S△OAP=|(-1)×(-2)|=1,
所以有,m2=1,解得m=±2,
所以點(diǎn)Q的坐標(biāo)為Q1(2,1)和Q2(-2,-1);

(3)因?yàn)樗倪呅蜲PCQ是平行四邊形,所以O(shè)P=CQ,OQ=PC,
而點(diǎn)P(-1,-2)是定點(diǎn),所以O(shè)P的長(zhǎng)也是定長(zhǎng),
所以要求平行四邊形OPCQ周長(zhǎng)的最小值就只需求OQ的最小值,(8分)
因?yàn)辄c(diǎn)Q在第一象限中雙曲線上,所以可設(shè)點(diǎn)Q的坐標(biāo)為Q(n,),
由勾股定理可得OQ2=n2+=(n-2+4,
所以當(dāng)(n-2=0即n-=0時(shí),OQ2有最小值4,
又因?yàn)镺Q為正值,所以O(shè)Q與OQ2同時(shí)取得最小值,
所以O(shè)Q有最小值2,由勾股定理得OP=,
所以平行四邊形OPCQ周長(zhǎng)的最小值是2(OP+OQ)=2(+2)=2+4.(10分)
點(diǎn)評(píng):此題難度稍大,考查一次函數(shù)反比例函數(shù)二次函數(shù)的圖形和性質(zhì),綜合性比較強(qiáng).要注意對(duì)各個(gè)知識(shí)點(diǎn)的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=
1x
的圖象交于A、B兩點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)根據(jù)圖象求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個(gè)新函數(shù)y=x+
1
x
其圖象如圖所示.(因其圖精英家教網(wǎng)象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個(gè)命題:
①該函數(shù)的圖象是中心對(duì)稱圖形;
②當(dāng)x<0時(shí),該函數(shù)在x=-1時(shí)取得最大值-2;
③y的值不可能為1;
④在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是
 
.(請(qǐng)寫出所有正確的命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個(gè)交點(diǎn)為A(-1,2-k2),另一個(gè)交點(diǎn)為B,且A、B關(guān)于原點(diǎn)O對(duì)稱,D為OB的中點(diǎn),過點(diǎn)D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計(jì)算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•相城區(qū)一模)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),且P(-1,-2)為雙曲線上的一點(diǎn).
(1)求出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)觀察圖象,寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若點(diǎn)Q在第一象限中的雙曲線上運(yùn)動(dòng),作以O(shè)P、OQ為鄰邊的平行四邊形OPCQ,求平行四邊形OPCQ周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個(gè)新函數(shù)y=x+
1
x
,其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個(gè)命題:
①該函數(shù)的圖象是中心對(duì)稱圖形;
②當(dāng)x<0時(shí),該函數(shù)在x=-1時(shí)取得最大值-2;
③y的值不可能為1;
④在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案