【題目】如圖,直角三角形ABC有一外接圓,其中∠B=90°,AB>BC,今欲在 上找一點P,使得 = ,以下是甲、乙兩人的作法: 甲:⑴取AB中點D
⑵過D作直線AC的平行線,交 于P,則P即為所求
乙:⑴取AC中點E
⑵過E作直線AB的平行線,交 于P,則P即為所求
對于甲、乙兩人的作法,下列判斷何者正確?(

A.兩人皆正確
B.兩人皆錯誤
C.甲正確,乙錯誤C
D.甲錯誤,乙正確

【答案】D
【解析】解:(1)由甲的作法可知,DP是△ABC的中位線, ∵DP不垂直于BC,
;(2)由乙的作法,連BE,可知△BEC為等腰三角形
∵直線PE⊥BC,
∴∠1=∠2
= ;
∴甲錯誤,乙正確.
故選D.

【考點精析】通過靈活運用三角形中位線定理和垂徑定理,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=2∠C,∠BAC的平分線ADBCD,過BBE⊥ADADF,交ACE.

(1)求證:△ABE為等腰三角形;

(2)已知AC=11,AB=6,求BD長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華在某月的日歷中圈出幾個數(shù),算得這三個數(shù)的和為36,那么這幾個數(shù)的形式可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm.
(1)當∠AOB=20°時,求所作圓的半徑;(結果精確到0.01cm)
(2)保持∠AOB=20°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結果精確到0.01cm) (參考數(shù)據:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)如圖所示,在四邊形ABCD中,AB=2,BC=2CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)小寧和婷婷在一起做拼圖游戲,他們用 、△△、=”構思出了獨特而有意義的圖形并根據圖形還用簡潔的語言進行了表述:

觀察以上圖案

1)這個圖案有什么特點?

2)它可以通過一個基本圖案經過怎樣的平移而形成?

3)在平移的過程中,基本圖案的大小、形狀、位置是否發(fā)生了變化?你能解釋其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點E、F分別是ABAC的中點.

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長為12,兩條對角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩支清雪隊同時開始清理某路段積雪,一段時間后,乙隊被調往別處,甲隊又用了3小時完成了剩余的清雪任務,已知甲隊每小時的清雪量保持不變,乙隊每小時清雪50噸,甲、乙兩隊在此路段的清雪總量y(噸)與清雪時間x(時)之間的函數(shù)圖象如圖所示.
(1)乙隊調離時,甲、乙兩隊已完成的清雪總量為噸;
(2)求此次任務的清雪總量m;
(3)求乙隊調離后y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某長方形廣場的四個角都有一個半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長方形長為a米,寬為b

1分別用代數(shù)式表示草地和空地的面積;

2若長方形長為300米,寬為200米,圓形的半徑為10米,求廣場空地的面積(計算結果保留到整數(shù))

查看答案和解析>>

同步練習冊答案