【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?
【答案】
(1)解:甲的平均成績a= =7(環(huán)),
∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,
∴乙射擊成績的中位數(shù)b= =7.5(環(huán)),
其方差c= ×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
= ×(16+9+1+3+4+9)
=4.2(環(huán))
(2)解:從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;
綜合以上各因素,若選派一名學生參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大
【解析】(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.
【考點精析】根據(jù)題目的已知條件,利用條形統(tǒng)計圖和折線統(tǒng)計圖的相關知識可以得到問題的答案,需要掌握能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.
科目:初中數(shù)學 來源: 題型:
【題目】請用直尺和圓規(guī)在所給的兩個矩形中各作一個不為正方形的菱形,且菱形的四個頂點都在矩形的邊上,面積相同的圖形視為同一種.(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A旋轉到△AB′C′的位置,使得CC′∥AB,則∠BAB′=( )
A.30°
B.35°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,則下列五個結論中正確的是( )
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當AM+BM+CM的最小值為2 時,菱形ABCD的邊長為2.
A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在線段AB的同側作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:
(1)點點發(fā)現(xiàn)的結論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關系,并給予證明;
(2)設點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.
(1)點A的坐標為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知在⊙O中,點C為劣弧AB上的中點,連接AC并延長至D,使CD=CA,連接DB并延長DB交⊙O于點E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長為4,求陰影部分的面積之和.(結果保留π與根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為2cm的正方形,使不規(guī)則區(qū)域落在正方形內,現(xiàn)向正方形內隨機投擲小石子(假設小石子落在正方形內每一點都是等可能的),經過大量重復投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.25附近,由此可估計不規(guī)則區(qū)域的面積是m2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com