【題目】渦陽某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為元,銷售價為元時,每天可售出件,為了迎接-兒童節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價元,那么平均可多售出.

(1)若每件童裝降價元,每天可售出 件,每件盈利 (用含的代數(shù)式表示);

每件童裝降價多少元時,能讓利于顧客并且商家平均每天能贏利.

【答案】(1);(2)每件童裝降價元時,平均每天盈利.

【解析】

(1)根據(jù)每降價1元,可多售出3件,降價x元,則可多售出3x件,由此即可求得答案;

(2)根據(jù)總利潤=單件利潤×數(shù)量列出方程,解方程即可得答案.

(1)若每件童裝降價元,每天可售出(30+3x)件,每件盈利(100-60-x)元,

故答案為:;

由題意得:,

化簡得:,

解得:,

要讓利顧客,,

答:每件童裝降價元時,平均每天盈利.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點Ay軸的正半軸上,點Cx軸的正半軸上,線段OA,OC的長分別是m,n且滿足(m-6)2+0,點D是線段OC上一點,將△AOD沿直線AD翻折,點O落在矩形對角線AC上的點E

1)求線段OD的長

2)求點E的坐標

3DE所在直線與AB相交于點M,點Nx軸的正半軸上,以M、A、NC為頂點的四邊形是平行四邊形時,求N點坐

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣x+2,l1x軸交于點B,直線l2經(jīng)過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,

(1)求點C的坐標及直線l2的解析式;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD中點,將ABE沿直線BE折疊后得到GBE,延長BGCDF,若AB=6,BC=CF的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對

他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):


第一次

第二次

第三次

第四次

第五次

第六次


10

8

9

8

10

9


10

7

10

10

9

8

1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);

2)分別計算甲、乙六次測試成績的方差;

3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加全國比賽更合適,請說明理由.

(計算方差的公式:s2])

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是菱形,分別是上的動點,連接,則的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】莊子說:“一尺之椎,日取其半,萬世不竭”.這句話(文字語言)表達了古人將事物無限分割的思想,用圖形語言表示為圖1,按此圖分割的方法,可得到一個等式(符號語言):1=

圖2也是一種無限分割:在△ABC中,∠C=90°,∠B=30°,過點C作CC1⊥AB于點C1,再過點C1作C1C2⊥BC于點C2,又過點C2作C2C3⊥AB于點C3,如此無限繼續(xù)下去,則可將利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假設(shè)AC=2,這些三角形的面積和可以得到一個等式是_____

查看答案和解析>>

同步練習(xí)冊答案