【題目】在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為.
求的值及拋物線與軸的交點(diǎn)坐標(biāo);
若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.
【答案】(1) a=-1;坐標(biāo)為,;(2).
【解析】
(1)利用拋物線的對(duì)稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點(diǎn)坐標(biāo);
(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時(shí),y<0,即-1-2+m<0;當(dāng)x=-1時(shí),y≥0,即-1+2+m≥0,然后解兩個(gè)不等式求出它們的公共部分可得到m的范圍.
根據(jù)題意得,解得,
所以拋物線的解析式為,
當(dāng)時(shí),,解得,,
所以拋物線與軸的交點(diǎn)坐標(biāo)為,;
拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對(duì)稱軸為直線,
∵拋物線與軸的交點(diǎn)都在點(diǎn),之間,
∴當(dāng)時(shí),,即,解得;
當(dāng)時(shí),,即,解得,
∴的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一點(diǎn),⊙O交AB于點(diǎn)D,交BC延長線于點(diǎn)E.連接ED,交AC于點(diǎn)G,且AG=AD.
(1)求證:AB與⊙O相切;
(2)設(shè)⊙O與AC的延長線交于點(diǎn)F,連接EF,若EF∥AB,且EF=5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)甲.乙兩班分別選5名同學(xué)參加“學(xué)雷鋒讀書活動(dòng)”演講比賽,其預(yù)賽成績?nèi)鐖D:
(1)根據(jù)上圖求出下表所缺數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | ||
乙班 | 8 | 1.6 |
(2)根據(jù)上表中的平均數(shù)、中位數(shù)和方差你認(rèn)為哪班的成績較好?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸為直線x=1,則下列結(jié)論正確的是( 。
A. ac>0 B. 當(dāng)x>0時(shí),y隨x的增大而減小
C. 2a﹣b=0 D. 方程ax2+bx+c=0的兩根是x1=﹣1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的轉(zhuǎn)盤被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上1,2,3,4,5,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:
甲:如果指針前三次都停在了3號(hào)扇形,下次就一定不會(huì)停在3號(hào)扇形;
乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號(hào)扇形;
丙:指針停在奇數(shù)號(hào)扇形的概率與停在偶數(shù)號(hào)扇形的概率相等;
。哼\(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號(hào)扇形,指針停在6號(hào)扇形的可能性就會(huì)加大。
其中,你認(rèn)為正確的見解有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩條相交線段MN,EF,M,N,E,F分別在邊AB,CD,AD,BC上.小明認(rèn)為:若MN=EF,則MN⊥EF;小亮認(rèn)為:若MN⊥EF,則MN=EF.你認(rèn)為( )
A. 僅小明對(duì) B. 僅小亮對(duì) C. 兩人都對(duì) D. 兩人都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),AB=1,分別以AC和CB為一邊作正方形,用S表示這兩個(gè)正方形的面積之和,下列判斷正確的是( )
A. 當(dāng)點(diǎn)C是AB的中點(diǎn)時(shí),S最小 B. 當(dāng)點(diǎn)C是AB的中點(diǎn)時(shí),S最大
C. 當(dāng)點(diǎn)C為AB的三等分點(diǎn)時(shí),S最小 D. 當(dāng)點(diǎn)C為AB的三等分點(diǎn)時(shí),S最大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com