【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點(diǎn),CDl2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.

【答案】C、D兩點(diǎn)間的距離為30m.

【解析】直接利用等腰三角形的判定與性質(zhì)得出DE=AE=20,進(jìn)而求出EF的長,再得出四邊形ACDF為矩形,則CD=AF=AE+EF求出答案.

解:過點(diǎn)D作l1的垂線,垂足為F,

∵∠DEB=60°,∠DAB=30°,

∴∠ADE=∠DEB﹣∠DAB=30°,

∴△ADE為等腰三角形,

∴DE=AE=20,

在Rt△DEF中,EF=DEcos60°=20×=10,

∵DF⊥AF,

∴∠DFB=90°,

∴AC∥DF,由已知l1∥l2,

∴CD∥AF,

∴四邊形ACDF為矩形,CD=AF=AE+EF=30,

答:C、D兩點(diǎn)間的距離為30m

“點(diǎn)睛”此題考查了兩點(diǎn)之間的距離以及等腰三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系,得出EF的長是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線k>0)與雙曲線x>0)交于點(diǎn)M、N,且點(diǎn)N的橫坐標(biāo)為k. .

(1) 如圖1,當(dāng)k=1時(shí).

①求m的值及線段MN的長;

②在y軸上是否是否存在點(diǎn)Q,使∠MQN=90°,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

(2) 如圖2,以MN為直徑作⊙P,當(dāng)⊙Py軸相切時(shí),求k值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.

(1)若∠B=70°,則∠NMA的度數(shù)是
(2)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點(diǎn)P,使由P,B,C構(gòu)成的△PBC的周長值最小?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有(

A.6個(gè)
B.5個(gè)
C.4個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下兩小題后作出相應(yīng)的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個(gè)命題的題設(shè)和結(jié)論在命題中的位置恰好對(duì)凋,我們把其中一命題叫做另一個(gè)命題的逆命題,請(qǐng)你寫出命題“角平分線上的點(diǎn)到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語句作出圖形,并寫出該命題的文字?jǐn)⑹?
已知:過直線AB上一點(diǎn)O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張大伯從報(bào)社以每份0.4元的價(jià)格購進(jìn)了a份報(bào)紙,以每份0.5元的價(jià)格售出了b份報(bào)紙,剩余的以每份0.2元的價(jià)格退回報(bào)社,則張大伯賣報(bào)收入元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2xy=3,用含x的式子表示y,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,△ABC中,D是BC邊上一點(diǎn),則△ABD與△ADC有一個(gè)相同的高,它們的面積之比等于相應(yīng)的底之比,記為(△ABD、△ADC的面積分別用記號(hào)、表示).現(xiàn)有,則

(2)如圖2,△ABC中,E、F分別是BC、AC邊上一點(diǎn),且有, ,AE與BF相交于點(diǎn)G.現(xiàn)作EH∥BF交AC于點(diǎn)H.依次求、、的值.

(3)如圖3,△ABC中,點(diǎn)P在邊AB上,點(diǎn)M、N在邊AC上,且有, ,

BM、BN與CP分別相交于點(diǎn)R、Q.現(xiàn)已知△ABC的面積為1,求△BRQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)求值。
(1)已知x+y=15,x2+y2=113,求x2﹣xy+y2的值.
(2)先化簡(jiǎn),再求值: ÷ +1,在0,1,2,三個(gè)數(shù)中選一個(gè)合適的,代入求值.

查看答案和解析>>

同步練習(xí)冊(cè)答案