【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點(diǎn)F,連結(jié) CD、EB.

(1)不添加輔助線,找出圖中其它的全等三角形 ;

(2)求證:CF=EF.

【答案】(1)△ACD≌△AEB,△DCF≌△BEF;(2)證明見解析.

【解析】試題分析:(1)根據(jù)Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,從而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF;

(2)先證得△CDF≌△EBF,進(jìn)而得到CF=EF.

試題解析:(1)圖中其它的全等三角形為:△ACD≌△AEB,△DCF≌△BEF;

(2)∵Rt△ABC≌Rt△ADE,

∴AC=AE,AD=AB,∠CAB=∠EAD,

∴∠CAB-∠DAB=∠EAD-∠DAB.

即∠CAD=∠EAB.

∴△CAD≌△EAB,

∴CD=EB,∠ADC=∠ABE.

又∵∠ADE=∠ABC,

∴∠CDF=∠EBF.

又∵∠DFC=∠BFE,

∴△CDF≌△EBF.

∴CF=EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(-10)×(-8.24)×(-0.1)=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“”表示一種新運(yùn)算,它的意義是ab=ab-(a+b)

(1)求(-2)(-3);

(2)求(34)(-5).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=-x+3,當(dāng)0≤x≤2時(shí),y的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,4),B(-4,2),C(-2,1),且△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對稱。

(1)畫出△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);

(2)P(a,b)是△ABC的AC邊上一點(diǎn),△ABC經(jīng)平移后點(diǎn)P的對應(yīng)點(diǎn)為P'(a+3,b+1),請畫出平移后的△A2B2C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一多邊形的每一個(gè)內(nèi)角都等于150°,則這個(gè)多邊形是(

A. 十二邊形B. 十邊形C. 八邊形D. 六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】望江中學(xué)為了了解學(xué)生平均每天“誦讀經(jīng)典”的時(shí)間,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),并將調(diào)查統(tǒng)計(jì)的結(jié)果分為:每天誦讀時(shí)間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘的學(xué)生記為B類,40分鐘<t≤60分鐘的學(xué)生記為C類,t>60分鐘的學(xué)生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)m= %,n= %,這次共抽查了 名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì);

(2)請補(bǔ)全上面的條形圖;

(3)如果該校共有1200名學(xué)生,請你估計(jì)該校C類學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。

A. 3aa2B. a2+a3a5C. a6÷a2a4D. a23a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的每個(gè)內(nèi)角都等于144°,求它的邊數(shù).

查看答案和解析>>

同步練習(xí)冊答案