已知,比較a與b的大小關(guān)系.
【答案】分析:將a分母有理化,再與b進(jìn)行比較大。
解答:解:∵a===2-
又∵b=2-,
∴a=b.
點(diǎn)評:本題考查了二次根式的化簡,比較大小的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知甲乙兩組數(shù)據(jù)的平均數(shù)都是5,甲組數(shù)據(jù)的方差S2=
1
12
,乙組數(shù)據(jù)的方差S2=
1
10
,則( 。
A、甲組數(shù)據(jù)比乙組數(shù)據(jù)的波動(dòng)大
B、乙組數(shù)據(jù)比甲組數(shù)據(jù)的波動(dòng)大
C、甲組數(shù)據(jù)與乙組數(shù)據(jù)的波動(dòng)一樣大
D、甲乙兩組數(shù)據(jù)的波動(dòng)大小不能比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、已知甲乙兩組數(shù)據(jù)的平均數(shù)都是5,甲組數(shù)據(jù)的方差為2.1,乙組數(shù)據(jù)的方差為1.2,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解,回答問題.
在解決數(shù)學(xué)問題的過程中,有時(shí)會遇到比較兩數(shù)大小的問題,解決這類問題的關(guān)鍵是根據(jù)命題的題設(shè)和結(jié)論特征,采用相應(yīng)辦法,其中巧用“作差法”是解決此類問題的一種行之有效的方法:若a-b>0,則a>b;若a-b=0,則a=b;若a-b<0,則a<b.
例如:在比較m2+1與m2的大小時(shí),小東同學(xué)的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
請你參考小東同學(xué)的作法,解決如下問題:
(1)請你比較4
3
與(2+
3
2的大;
(2)已知a、b為實(shí)數(shù),且ab=1,設(shè)M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,試比較M、N的大;
(3)一天,小明爸爸的男同事來家做客,已知爸爸的年齡比小明年齡的平方大7歲,爸爸同事的年齡是小明年齡的5倍,請你幫忙算一算,小明該稱呼爸爸的這位同事為“叔叔”還是“大伯”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列內(nèi)容,然后解答問題:
題目:“已知a=
206
-14
b=
299
-17
,試比較a與b的大小.”
分析:若不使用計(jì)算器,將
206
-14
299
-17
比較,
由于
206
299
,14<17,因?yàn)楸粶p數(shù)與減數(shù)同時(shí)增大,所以無法斷定二者的大小.
可作這樣的變換:a=
206
-14=
(
206
-14)(
206
+14)
206
+14
=
206-142
206
+14
=
10
206
+14
b=
299
-17=
(
299
-17)(
299
+17)
299
+17
=
299-172
299
+17
=
10
299
+17

299
206
,17>14,∴
299
+17>
206
+14

即b的分母大,而分子都是10,所以
10
206
+14
10
299
+17

即a>b
請你根據(jù)上述提供的信息,解答下列題目:
已知a>0,x=
a+5
-
a+2
,y=
a+3
-
a
,試比較x與y的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項(xiàng)式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂
點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個(gè);
②所畫的長方形中哪個(gè)周長最?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

同步練習(xí)冊答案