【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn)。

(1)寫出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;
(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷△OMN的形狀,并證明你的結(jié)論。

【答案】
(1) 解:∵∠BAC=90°,O為BC的中點(diǎn),

∴BO=CO=AO=BC,


(2)解:△OMN是等腰直角三角形.理由如下:

連接OA,如圖,

∵AC=AB,∠BAC=90°,
∴OA=OB=OC,OA平分∠BAC,∠B=45°,

∴∠NAO=∠B=45°,

在△NAO和△MBO 中,

AN=BM ,∠NAO=∠B ,AO=BO ,

∴△NAO≌ △MBO,
∴ON=OM,∠AON=∠BOM,

∵AC=AB,O是BC的中點(diǎn),
∴AO⊥BC,

即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,

即∠NOM=90°,

∴△OMN是等腰直角三角形.


【解析】(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一邊得出答案.
(2)△OMN是等腰直角三角形.理由如下:連接OA,由等腰直角三角形性質(zhì)得出OA=OB=OC,AO⊥BC,OA平分∠BAC,∠NAO=∠B=45°,再由SAS得到△NAO≌ △MBO,由全等三角形的性質(zhì)得出ON=OM,∠AON=∠BOM,再根據(jù)垂直的定義得出∠BOM+∠AOM=90°,由等量代換得∠NOM=90°,從而得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°,以及對(duì)直角三角形斜邊上的中線的理解,了解直角三角形斜邊上的中線等于斜邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB2m,臺(tái)階AC的坡度為1,且B,C,E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹DE的高度(測(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3x x 1 mx2 nx ,則m n _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請(qǐng)說(shuō)明理由;若不垂直,則只要寫出結(jié)論,不用寫理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP(如圖①)經(jīng)過(guò)點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ(如圖②),當(dāng)點(diǎn)C′恰好落在OA上時(shí),點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有2個(gè),黑球有1個(gè),綠球有3個(gè),第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,則兩次摸到的都是紅球的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.

填空:

①當(dāng)的長(zhǎng)度是   時(shí),四邊形ABDE是菱形;

②當(dāng)的長(zhǎng)度是   時(shí),△ADE是直角三角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊△ABC中,點(diǎn)D為射線BA上一點(diǎn),作DE=DC,交直線BC于點(diǎn)E,∠ABC的平分線BF交CD于點(diǎn)F,過(guò)點(diǎn)A作AH⊥CD于H,當(dāng)EDC=30 ,CF= ,則DH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):a(2﹣a)﹣(3+a)(3﹣a)

查看答案和解析>>

同步練習(xí)冊(cè)答案