【題目】拋物線經(jīng)過(guò)點(diǎn)和點(diǎn)
求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
該拋物線與直線相交于兩點(diǎn),點(diǎn)P是拋物線上的動(dòng)點(diǎn)且位于x軸下方,直線軸,分別與x軸和直線CD交于點(diǎn)M、N.
①連結(jié)PC、PD,如圖1,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由;
②連結(jié)PB,過(guò)點(diǎn)C作,垂足為點(diǎn)Q,如圖2,是否存在點(diǎn)P,使得與相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】 為;(2) ①見(jiàn)解析; ②見(jiàn)解析.
【解析】
(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出b、t的值,結(jié)合即可確定b值,此題得解;聯(lián)立拋物線與直線CD的解析式成方程組,通過(guò)解方程組可求出點(diǎn)C、D的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)N的坐標(biāo)為,,根據(jù)三角形面積公式可得出,利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題;利用相似三角形的性質(zhì)可得出:若與相似,則有或,設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)N的坐標(biāo)為,點(diǎn)M的坐標(biāo)為,點(diǎn)Q的坐標(biāo)為,進(jìn)而可得出,,,,將其代入或中即可求出x的值,結(jié)合即可得出點(diǎn)P的坐標(biāo).
(1)將、代入,
得:,
解得:,.
,
,
該拋物線所對(duì)應(yīng)的函數(shù)解析式為.
聯(lián)立拋物線與直線CD的解析式成方程組,
得:,
解得:,,
點(diǎn)C的坐標(biāo)為,點(diǎn)D的坐標(biāo)為.
設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)N的坐標(biāo)為,
,
.
,
當(dāng)時(shí),取最大值,最大值為64,
在點(diǎn)P運(yùn)動(dòng)過(guò)程中,的面積存在最大值,最大值為64.
,
若與相似,則有或.
設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)N的坐標(biāo)為,點(diǎn)M的坐標(biāo)為,點(diǎn)Q的坐標(biāo)為,
,,,.
當(dāng)時(shí),有,
解得:,舍去,
點(diǎn)P的坐標(biāo)為;
當(dāng)時(shí),有,
解得:,舍去,
點(diǎn)P的坐標(biāo)為.
綜上所述:存在點(diǎn)P,使得與相似,點(diǎn)P的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知A(2,2)、B(﹣2,0)、C(﹣1,﹣2).
(1)在平面直角坐標(biāo)系中畫(huà)出△ABC;
(2)若點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為 ;
(3)求△ABC的面積;
(4)已知點(diǎn)P為x軸上一點(diǎn),若S△ABP=5時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD為AB邊上的高.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著△ABC的三條邊逆時(shí)針走一圈回到A點(diǎn),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)求CD的長(zhǎng);
(2)t為何值時(shí),△ACP是等腰三角形?
(3)若M為BC上一動(dòng)點(diǎn),N為AB上一動(dòng)點(diǎn),是否存在M,N使得AM+MN 的值最小?如果有,請(qǐng)直接寫(xiě)出最小值,如果沒(méi)有,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在中,C是BP邊上一點(diǎn),PA是的切線,是的外接圓,AD是的直徑,且交BP于點(diǎn)E.
求證:;
過(guò)點(diǎn)C作,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若,AF::3,
①求CF的長(zhǎng);
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知中,,點(diǎn)E為AC上的一點(diǎn),連接BE,在BC上找一點(diǎn)G,使得,AG交BE于K.
若,且,,求EK的長(zhǎng)度.
如圖2,過(guò)點(diǎn)A作交BE于點(diǎn)D,過(guò)分別向AB所在的直線作垂線,垂足分別為點(diǎn)M、N,且,若D為BE的中點(diǎn),證明:
如圖3,將中的條件“若D為BE的中點(diǎn)”改為“若是大于2的整數(shù)”,其他條件不變,請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,∠A=75°,點(diǎn)D是AB的中點(diǎn).將△ACD沿CD翻折得到△A′CD,連接A′B.
(1)求證:CD∥A′B;
(2)若AB=4,求A′B2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】陳杰騎自行車(chē)去上學(xué),當(dāng)他以往常的速度騎了一段路時(shí),忽然想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的一家書(shū)店,買(mǎi)到書(shū)后繼續(xù)趕去學(xué)校.以下是他本次上學(xué)的路程與所用時(shí)間的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)陳杰家到學(xué)校的距離是多少米?書(shū)店到學(xué)校的距離是多少米?
(2)陳杰在書(shū)店停留了多少分鐘?本次上學(xué)途中,陳杰一共行駛了多少米?
(3)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段陳杰騎車(chē)速度最快?最快的速度是多少米?
(4)如果陳杰不買(mǎi)書(shū),以往常的速度去學(xué)校,需要多少分鐘?本次上學(xué)比往常多用多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某企業(yè)決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備;現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量及年消耗費(fèi)如下表:
A型 | B型 | |
價(jià)格(萬(wàn)元/臺(tái)) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
年消耗費(fèi)(萬(wàn)元/臺(tái)) | 1 | 1 |
經(jīng)預(yù)算,該企業(yè)購(gòu)買(mǎi)設(shè)備的資金不高于105萬(wàn)元。
(1) 請(qǐng)你設(shè)計(jì)該企業(yè)有幾種購(gòu)買(mǎi)方案;
(2)若該企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過(guò)點(diǎn)D作AC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE.
(1)證明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com