【題目】如圖,在⊙O中,AB是直徑,CD是弦,ABCD

1P上一點(不與C、D重合),求證:∠CPD=COB;

2)點P在劣弧CD上(不與CD重合)時,∠CPD與∠COB有什么數(shù)量關(guān)系?請證明你的結(jié)論.

【答案】2∠CP′D+∠COB=180°

【解析】

1根據(jù)垂徑定理知,得到∠COB=DOB=COD,由圓周角定理知CPD=COD,等量代換即可得到結(jié)論;

2)根據(jù)圓內(nèi)接四邊形的對角互補及圓周角定理可以得出結(jié)論

1)連接OD

AB是直徑ABCD,,∴∠COB=DOB=COD

又∵∠CPD=COD,∴∠CPD=COB

2CPD+∠COB=180°.理由如下

連接OD

∵∠CPD+∠CPD=180°,COB=DOB=COD

又∵∠CPD=COD,∴∠COB=CPD,∴∠CPD+∠COB=180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2+(a+3)x+a+1=0是關(guān)于x的一元二次方程.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根為x1 ,x2 ,x12+x22=10,求實數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 AB=AC,CD⊥ABD,BE⊥ACEBECD相交于點O

1)求證AD=AE;

2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kxb的圖象與反比例函數(shù)y2的圖象交于A(m,3),B(3,n)兩點.

(1)求一次函數(shù)的解析式;

(2)觀察函數(shù)圖象,直接寫出關(guān)于x的不等式kxb的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個矩形花圃.如圖所示,矩形花圃的一邊利用長10米的院墻,另外三條邊用籬笆圍成,籬笆的總長為32米.設(shè)AB的長為x米,矩形花圃的面積為y平方米.

(1)用含有x的代數(shù)式表示BC的長,BC=   ;

(2)求yx的函數(shù)關(guān)系式,寫出自變量x的取值范圍;

(3)當(dāng)x為何值時,y有最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城科技公司生產(chǎn)銷售一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷售成本三部分,經(jīng)核算,年該產(chǎn)品各部分成本所占比例約為.且年該產(chǎn)品的技術(shù)成本、制造成本分別為萬元、萬元.

確定的值,并求年產(chǎn)品總成本為多少萬元;

為降低總成本,該公司年及年增加了技術(shù)成本投入,確保這兩年技術(shù)成本都比前一年增加一個相同的百分?jǐn)?shù),制造成本在這兩年里都比前一年減少一個相同的百分?jǐn)?shù);同時為了擴大銷售量,年的銷售成本將在年的基礎(chǔ)上提高,經(jīng)過以上變革,預(yù)計年該產(chǎn)品總成本達(dá)到年該產(chǎn)品總成本的,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過整式乘法的學(xué)習(xí),我們進(jìn)一步了解了利用圖形面積來說明法則、公式等的正確性的方法,例如利用圖甲可以對平方差公式給予解釋.圖乙中的是一個直角三角形,,人們很早就發(fā)現(xiàn)直角三角形的三邊滿足的關(guān)系.圖丙是2002年國際數(shù)學(xué)家大會的會徽,選定的是我國古代數(shù)學(xué)家趙爽用來證明勾股定理的弦圖,弦圖是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊長為,較長直角邊長為,求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D為BC邊的中點,過點D作DEAB,DFAC,垂足分別為E,F(xiàn)

1求證:BED≌△CFD;

2A=60°,BE=2,求ABC的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB、CD互相垂直,垂足為E,點M在CD上,連接AM并延長交BC于點F,交圓上于點G,連接AD,AD=AM.

(1)如圖1,求證:AG⊥BC;

(2)如圖2,連接EF,DG,求證:EF∥DG;

(3)如圖3,在(2)的條件下,連接BG,若∠ABG=2∠BAG,EF=15,AB=32,求BG長.

查看答案和解析>>

同步練習(xí)冊答案