【題目】通過整式乘法的學(xué)習(xí),我們進(jìn)一步了解了利用圖形面積來說明法則、公式等的正確性的方法,例如利用圖甲可以對(duì)平方差公式給予解釋.圖乙中的是一個(gè)直角三角形,,人們很早就發(fā)現(xiàn)直角三角形的三邊滿足的關(guān)系.圖丙是2002年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽,選定的是我國(guó)古代數(shù)學(xué)家趙爽用來證明勾股定理的弦圖,弦圖是由四個(gè)全等的直角三角形和中間的小正方形拼成的一個(gè)大正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊長(zhǎng)為,較長(zhǎng)直角邊長(zhǎng)為,求出的值.

【答案】25

【解析】

利用勾股定理可得的值,從局部和整體兩種情況表示正方形的面積可求出的值,由完全平方公式可得結(jié)論.

即可得解

解:設(shè)大正方形的邊長(zhǎng)為,則

由題意,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)低碳生活,綠色出行,某自行車俱樂部利用周末組織遠(yuǎn)游騎行活動(dòng),自行車隊(duì)從甲地出發(fā),目的地為乙地,在自行車隊(duì)出發(fā)小時(shí)后,恰有一輛郵政車從甲地出發(fā),沿自行車隊(duì)行進(jìn)路線前往乙地,到達(dá)乙地后立即按原路返回甲地.自行車隊(duì)與郵政車行駛速度均保持不變,并且郵政車行駛速度是自行車隊(duì)行駛速度的.如圖所示的是自行車隊(duì)、郵政車離甲地的路程與自行車隊(duì)離開甲地的時(shí)間的關(guān)系圖象,請(qǐng)根據(jù)圖象提供的信息,回答下列問題.

1)自行車隊(duì)行駛的速度是 ;郵政車行駛的速度是 ; .

2)郵政車出發(fā)多少小時(shí)與自行車隊(duì)相遇?

3)當(dāng)郵政車與自行車隊(duì)相距時(shí),此時(shí)離郵政車出發(fā)經(jīng)過了多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊邊長(zhǎng)為a的正方形ABCD,使點(diǎn)C落在邊AB上的點(diǎn)M處(不與點(diǎn)A,B重合),點(diǎn)D落在點(diǎn) N處,折痕EF分別與邊BC、AD交于點(diǎn)E、F,MN與邊AD交于點(diǎn)G.

證明:(1)AGM∽△BME;

(2)若MAB中點(diǎn),則;

(3)AGM的周長(zhǎng)為2a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,CD是弦,ABCD

1P上一點(diǎn)(不與C、D重合),求證:∠CPD=COB;

2)點(diǎn)P在劣弧CD上(不與C、D重合)時(shí),∠CPD與∠COB有什么數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知相交于,平分,若,,連接,且.

1)求證:;

2)連接,判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這個(gè)分式為和諧分式”.

1)下列分式中,___________是和諧分式(填寫序號(hào)即可);

; ;

2)若為整數(shù),且為和諧分式,請(qǐng)寫出的值;

3)在化簡(jiǎn)時(shí),

小冬和小奧分別進(jìn)行了如下三步變形:

小冬:原式

小奧:原式

顯然,小奧利用了其中的和諧分式, 第三步所得結(jié)果比小冬的結(jié)果簡(jiǎn)單,原因是: ,請(qǐng)你接著小奧的方法完成化簡(jiǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生小明將線段的垂直平分線上的點(diǎn),稱作線段軸點(diǎn)”.其中,當(dāng)時(shí),稱為線段長(zhǎng)軸點(diǎn);當(dāng)時(shí),稱為線段短軸點(diǎn)”.

1)如圖1,點(diǎn),的坐標(biāo)分別為,,則在,,,中線段短軸點(diǎn)______.

2)如圖2,點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上,且.

①若為線段長(zhǎng)軸點(diǎn),則點(diǎn)的橫坐標(biāo)的取值范圍是(

A. B. C. D.

②點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn),在線段的垂直平分線的同側(cè).為線段軸點(diǎn),當(dāng)線段的和最小時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作ADE,使AEAD,DAEBAC,連接CE.設(shè)∠BACα,DCEβ.

(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),角αβ之間的數(shù)量關(guān)系是____________,請(qǐng)說明理由;

(2)如圖②,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),角αβ之間的數(shù)量關(guān)系是____________,請(qǐng)說明理由;

(3)當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上移動(dòng)時(shí),請(qǐng)?jiān)趫D③中畫出完整圖形并猜想角αβ之間的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是的角平分線上一點(diǎn),過點(diǎn)PC于點(diǎn),于點(diǎn),若,則=______________

查看答案和解析>>

同步練習(xí)冊(cè)答案