【題目】解方程(組):
(1) (2)
(3) (4)
(5) (6)
【答案】(1)y=1;(2)x=-1,(3)x=,(4);(5);(6)
【解析】試題分析:(1)移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可求出方程的解;
(2)去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可求出方程的解;
(3)去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可求出方程的解;
(4)運(yùn)用代入消元法求解即可;
(5)運(yùn)用加減消元法求解即可;
(6)運(yùn)用代入消元法求解即可.
試題解析:(1)
2y-11y=3-6,
-9y=-9,
∴y=1;
(2) (x+1)-2(x-1)=1-3x,
x+1-2x+2=1-3x,
x-x+3x=-1-2+1,
3x=-3,
∴x=-1;
(3),
5(4-x)=3(x-3)-15,
20-5x=3x-9-15,
-5x-3x=-20-9-15,
-8x=-44,
∴x=;
(4)
①代入②得,3y+2+3y=8
6y=6
∴y=1,
把y=1代入①得:x=5.
∴方程組的解為: ;
(5)
①-②得,-9y=-9
∴y=1;
把y=1代入①得:4x=8
∴x=2
∴方程組的解為: ;
(6)
方程變形為:
①×3-②×2得,-5y=4
∴y=-0.8
把y=-0.8代入①得,2x+5.6=8
∴x=1.2
∴方程組的解為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在函數(shù)圖像上,過點(diǎn)A作x軸和y軸的平行線分別交函數(shù)圖像于點(diǎn)B、C,直線BC與坐標(biāo)軸的交點(diǎn)為D、E.當(dāng)點(diǎn)A在函數(shù)圖像上運(yùn)動時,
(1)設(shè)點(diǎn)A橫坐標(biāo)為a,則點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 (用含a的字母表示);
(2)△ABC的面積是否發(fā)生變化?若不變,求出△ABC的面積,若變化,請說明理由;
(3)請直接寫出BD與CE滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點(diǎn)A(2,3).
(1)求k的值;
(2)判斷點(diǎn)B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
【答案】(1)k=-2(2)點(diǎn)B不在,點(diǎn)C在,(3)9<y<13
【解析】
試題分析:(1)把點(diǎn)A(2,3)代入y=kx+7即可求出k的值;(2)點(diǎn)B(-1,8),C(3,1)的橫坐標(biāo)代入函數(shù)解析式驗(yàn)證即可;(3)根據(jù)x的取值范圍,即可求出y的取值范圍.
試題解析:(1)把點(diǎn)A(2,3)代入y=kx+7得:k=-2
(2)當(dāng)x=-1時,y=-2×(-1)+7=9
∵9≠8∴點(diǎn)B不在拋物線上.
當(dāng)x=3時,y=-2×3+7=1
∴點(diǎn)C在拋物線上
(3)當(dāng)x=-3時,y=13,當(dāng)x=-,1時,y=9,所以9<y<13
考點(diǎn):一次函數(shù).
【題型】解答題
【結(jié)束】
24
【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運(yùn)往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1(h)到達(dá)B地,如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關(guān)系,a表示A、B兩地之間的距離.請結(jié)合圖中的信息解決如下問題:
(1)分別計算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回,請問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時間t(h)的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).
(1)把△ABC向下平移8個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對應(yīng)的點(diǎn),寫出P2的坐標(biāo)為 ;
(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F分別是AB,CD上的點(diǎn),點(diǎn)G是BC的延長線上一點(diǎn),且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b的圖像經(jīng)過點(diǎn)(0,-2),(2,2).
(1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫出此函數(shù)的圖像;;
(2)根據(jù)圖像回答:當(dāng)x 時,y1=0;
(3)求直線y1=kx+b、直線y2=-2x+4與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com