【題目】如圖,在△ABC中,∠C=90°,點P在AC上運動,點D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)判斷DE與DP的位置關系,并說明理由;
(2)若AC=6,BC=8,PA=2,求線段DE的長.
【答案】(1)DE⊥DP,理由見解析;(2)DE=4.75
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到EB=ED,于是得到結論;
(2)連接PE,設DE=x,則EB=ED=x,CE=8﹣x,根據(jù)勾股定理即可得到結論.
解:(1)DE⊥DP,
理由如下:∵PD=PA,
∴∠A=∠PDA,
∵EF是BD的垂直平分線,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠PDA+∠EDB=90°,
∴∠PDE=180°﹣90°=90°,
∴DE⊥DP;
(2)連接PE,設DE=x,則EB=ED=x,CE=8﹣x,
∵∠C=∠PDE=90°,
∴PC2+CE2=PE2=PD2+DE2,
∴42+(8﹣x)2=22+x2,
解得:x=4.75,
則DE=4.75.
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的正方形網(wǎng)格中標有A、B、C、D、E、F六個格點,頂點在格點上的三角形叫做格點三角形,如格點三角形△ABC.
(1)△ABC的面積為 ;
(2)△ABC的形狀為 ;
(3)根據(jù)圖中標示的各點(A、B、C、D、E、F)位置,與△ABC全等的格點三角形是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,4),與x軸的一個交點是B(3,0),下列結論:①abc>0;②2a+b=0;③方程ax2+bx+c=4有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣2.0);⑤x(ax+b)≤a+b,其中正確結論的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學校開展的數(shù)學活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準備修建一批室外簡易的足球場和籃球場,供市民免費使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀材料)
因式分解:.
解:將“”看成整體,令,則原式.
再將“”還原,原式.
上述解題用到的是“整體思想”,整體思想是數(shù)學解題中常用的一種思想方法.
(問題解決)
(1)因式分解:;
(2)因式分解:;
(3)證明:若為正整數(shù),則代數(shù)式的值一定是某個整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CN是等邊△ABC的外角∠ACM內(nèi)部的一條射線,點A關于CN的對稱點為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點E,P.
(Ⅰ)依題意補全圖形.
(Ⅱ)若∠ACN=α,求∠BDC的大小(用含α的式子表示).
(Ⅲ)若PA=x,PC=y,求PB的長度(用x,y的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com