【題目】如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC , 交AC于D , BC=4 cm.
(1)求證:AC⊥OD;
(2)求OD的長;
【答案】
(1)
證明:∵AB是⊙O的直徑,
∴∠C=90°.
∵OD∥BC,
∴∠ADO=∠C=90°.∴AC⊥OD.
(2)
解:∵OD∥BC,
又∵O是AB的中點,
∴OD是△ABC的中位線.
∴OD= BC= ×4=2(cm).
【解析】(1)證明:∵AB是⊙O的直徑,
∴∠C=90°.
∵OD∥BC,
∴∠ADO=∠C=90°.∴AC⊥OD.
(2)∵OD∥BC,
又∵O是AB的中點,
∴OD是△ABC的中位線.
∴OD= BC= ×4=2(cm).
【考點精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對圓周角定理的理解,了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如上圖,反比例函數(shù)的圖象位于第一、三象限,其中第一象限內(nèi)的圖象經(jīng)過點A(1,2),請在第三象限內(nèi)的圖象上找一個你喜歡的點P,你選擇的P點坐標為 .
【答案】(-1,-2)(答案不唯一).
【解析】試題分析:根據(jù)“第一象限內(nèi)的圖象經(jīng)過點A(1,2)”先求出函數(shù)解析式,給x一個值負數(shù),求出y值即可得到坐標.
試題解析:∵圖象經(jīng)過點A(1,2),
∴
解得k=2,
∴函數(shù)解析式為y=,
當x=-1時,y==-2,
∴P點坐標為(-1,-2)(答案不唯一).
考點:反比例函數(shù)圖象上點的坐標特征.
【題型】填空題
【結(jié)束】
13
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當直線l向右平移4個單位時,直線l被兩函數(shù)圖象所截得的線段掃過的面積為__________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且當x=-4時,y=,
(1)求這個反比例函數(shù)關(guān)系式和自變量x的取值范圍;
(2)求當x=6時函數(shù)y的值.
【答案】(1) (2)
【解析】整體分析:
(1)由反比例函數(shù)的這定義求k值,確定x的取值范圍;(2)把x=6代入(1)中求得的反比例函數(shù)的解析式.
解:(1)設(shè)反比例函數(shù)關(guān)系式為,
則k=-4×=-2,
所以個反比例函數(shù)關(guān)系式是,自變量x的取值范圍是x≠0.
(2)當x=6時, ==-.
【題型】解答題
【結(jié)束】
18
【題目】如圖,函數(shù)y= 和y= - x+4的圖像交點為A、B,原點為O,求△AOB面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列說法:①若DE∥AB,則∠DEF+∠EFB=180;
②能與∠DEF構(gòu)成內(nèi)錯角的角的個數(shù)有2個;③能與∠BFE構(gòu)
成同位角的角的個數(shù)有2個;④能與∠C構(gòu)成同旁內(nèi)角的角的個數(shù)有4個.其中結(jié)論正確的是( )
A. ①② B. ③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形(長方形),點A、C的坐標分別為A(10,0 ),C(0,4),點D是OA的中點,點P在線段BC邊上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為 ____________________________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點.O是△ABC所在平面上的動點,連接OB、OC,點G、F分別是OB、OC的中點,順次連接點D、G、F、E.
(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com