(2010•邵陽)如圖,在等腰梯形ABCD中,AB∥DC,AD=BC=CD,點(diǎn)E為AB上一點(diǎn),連接CE.請?zhí)砑右粋(gè)你認(rèn)為合適的條件    ,使四邊形AECD為菱形.
【答案】分析:已知了四邊形ADCE的一組鄰邊相等,那么ADCE是菱形的前提條件是四邊形ADCE為平行四邊形,可針對平行四邊形的判定方法及等腰梯形的性質(zhì)來添加所需要的條件.
解答:解:可添加的條件為AE=AD或∠CEB=∠B等(答案不唯一);
以∠CEB=∠B為例進(jìn)行說明;
證明:∵∠CEB=∠B,
∴BC=CE=AD;
∵四邊形ABCD是等腰梯形,
∴∠DAB=∠CEB=∠B;
∴AD平行且相等于CE,即四邊形AECD是平行四邊形;
又∵AD=DC,
∴平行四邊形ADCE是菱形.
點(diǎn)評:此題主要考查了等腰梯形的性質(zhì)及菱形的判定方法:一組鄰邊相等的平行四邊形是菱形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•邵陽)如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對稱軸l與直線BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求直線BC的解析式;
(2)設(shè)點(diǎn)P為該拋物線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,r為半徑作⊙P
①當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),若⊙P與直線BC相交,求r的取值范圍;
②若r=,是否存在點(diǎn)P使⊙P與直線BC相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點(diǎn)坐標(biāo)(),對稱軸x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省邵陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•邵陽)如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對稱軸l與直線BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求直線BC的解析式;
(2)設(shè)點(diǎn)P為該拋物線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,r為半徑作⊙P
①當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),若⊙P與直線BC相交,求r的取值范圍;
②若r=,是否存在點(diǎn)P使⊙P與直線BC相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點(diǎn)坐標(biāo)(),對稱軸x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(02)(解析版) 題型:填空題

(2010•邵陽)如圖是小明家今年1月份至5月份的每月用電量的統(tǒng)計(jì)圖,據(jù)此推斷他家這五個(gè)月的月平均用電量是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2010•邵陽)如圖,在上海世博會場館通道的建設(shè)中,建設(shè)工人將坡長為10米(AB=10米)、坡角為20°30′(∠BAC=20°30′)的斜坡通道改造成坡角為12°30′(∠BDC=12°30′)的斜坡通道,使坡的起點(diǎn)從點(diǎn)A處向左平移至點(diǎn)D處,求改造后的斜坡通道BD的長.
(結(jié)果精確到0.1米.參考數(shù)據(jù):sin12°30′≈0.21,sin20°30′≈0.35,sin69°30′≈0.94).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省邵陽市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•邵陽)如圖,在邊長為1的小正方形組成的網(wǎng)格中,半徑為2的⊙O1的圓心O1在格點(diǎn)上,將一個(gè)與⊙O1重合的等圓向右平移2個(gè)單位,再向上平移2個(gè)單位得到⊙O2.則⊙O2與⊙O1的位置關(guān)系是( )

A.內(nèi)切
B.外切
C.相交
D.外離

查看答案和解析>>

同步練習(xí)冊答案