如圖,直線y=x+3與坐標軸分別交于A,B兩點,拋物線y=ax2+bx-3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標;
(2)求證:四邊形ABCD是直角梯形.

(1)解:由y=x+3與坐標軸分別交于A、B兩點,易得A點坐標(-3,0)、
B點坐標(0,3)
∵拋物線y=ax2+bx-3a經(jīng)過A、B兩點
∴9a-3b-3a=0a=-1-3a=3得:b=-2
∴拋物線解析式為:y=-x2-2x+3
∴頂點C的坐標為(-1,4)

(2)證明:∵B、D關于MN對稱,C(-1,4),B(0,3)
∴D(-2,3)
∵B(0,3),A(-3,0)
∴OA=OB,
∵C(-1,4),B(0,3)
∴直線CB的解析式為:y=-x+3,
∴E(3,0),
∴OB=OE,
∴∠BEO=∠OBE=45°,
又∠AOB=90°
∴∠ABO=∠BAO=45°
∴∠ABE=90°,
∵B、D關于MN對稱
∴BD⊥MN
又∵MN⊥X軸
∴BD∥X軸
∴∠DBA=∠BAO=45°
∴∠DBO=∠DBA+∠ABO=45°+45°=90°
∴∠ABC=180°-∠ABE=180°-∠DBO=90°
∴∠CBD=∠ABC-∠ABD=45°
∵CM⊥BD
∴∠MCB=45°
∵B,D關于MN對稱
∴∠CDM=∠CBD=45°,CD∥AB
又∵AD與BC不平行
∴四邊形ABCD是梯形
∵∠ABC=90°
∴四邊形ABCD是直角梯形.
分析:(1)先根據(jù)直線y=x+3求得點A與點B的坐標,然后代入二次函數(shù)的解析式求得其解析式,然后求得其頂點坐標即可;
(2)根據(jù)B、D關于MN對稱,C(-1,4),B(0,3)求得點D的坐標,然后得到AD與BC不平行,∴四邊形ABCD是梯形,再根據(jù)∠ABC=90°得到四邊形ABCD是直角梯形.
點評:本題考查了二次函數(shù)的綜合知識,特別題目中涉及到的對稱點的問題,更是近幾年中考中的常見知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習冊答案