【題目】在矩形紙片中,是邊上的點(diǎn),將紙片沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長為___________.
【答案】3或6.
【解析】
試題分析:由AD=8、AB=6結(jié)合矩形的性質(zhì)可得出AC=10,△EFC為直角三角形分兩種情況:①當(dāng)∠EFC=90°時(shí),可得出AE平分∠BAC,根據(jù)角平分線的性質(zhì)即可得出,解之即可得出BE的長度;②當(dāng)∠FEC=90°時(shí),可得出四邊形ABEF為正方形,根據(jù)正方形的性質(zhì)即可得出BE的長度.
∵AD=8,AB=6,四邊形ABCD為矩形,
∴BC=AD=8,∠B=90°,∴AC==10.
△EFC為直角三角形分兩種情況:
①當(dāng)∠EFC=90°時(shí),如圖1所示.
∵∠AFE=∠B=90°,∠EFC=90°,∴點(diǎn)F在對(duì)角線AC上,
∴AE平分∠BAC,∴,即,∴BE=3;
②當(dāng)∠FEC=90°時(shí),如圖2所示.
∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,
∴四邊形ABEF為正方形,∴BE=AB=6.
綜上所述:BE的長為3或6.
故答案為:3或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)12名隊(duì)員的年齡如下表所示:
年齡(歲) | 18 | 19 | 20 | 21 |
人數(shù) | 5 | 4 | 1 | 2 |
則這12名隊(duì)員年齡的眾數(shù)和中位數(shù)分別是( )
A.18,19B.18,19.5C.5,4D.5, 4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a,b為整數(shù),則ab的值為( )
A.2B.﹣2C.4D.﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)的電力資源豐富,并且得到了較好的開發(fā)。該地區(qū)一家供電公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法來計(jì)算電費(fèi). 月用電量x(度)與相應(yīng)電費(fèi)y(元)之間的函數(shù)圖像如圖所示.
(1)月用電量為100度時(shí),應(yīng)交電費(fèi)元;
(2)當(dāng)x≥100時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)月用電量為260度時(shí),應(yīng)交電費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把命題“全等三角形的對(duì)應(yīng)邊相等”改寫成“如果……,那么……”的形式:
____________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步了解某校八年級(jí)學(xué)生的身體素質(zhì)情況,體育老師對(duì)該校八年級(jí)(1)班50位學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,圖表如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請(qǐng)結(jié)合圖表完成下列問題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若在一分鐘內(nèi)跳繩次數(shù)少于120次的為測試不合格,則該校八年級(jí)共1000人中,一分鐘跳繩
不合格的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1cm,AD=3cm,點(diǎn)Q從A點(diǎn)出發(fā),以1cm/s的速度沿AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)P從點(diǎn)C出發(fā),以1cm/s的速度沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)了t秒.
(1)當(dāng)0<t<3,判斷四邊形BQDP的形狀,并說明理由;
(2)求四邊形BQDP的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式;
(3)求當(dāng)t為何值時(shí),四邊形BQDP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點(diǎn)P,使得△ADP面積是△ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com