【題目】某籃球隊(duì)12名隊(duì)員的年齡如下表所示:

年齡(歲)

18

19

20

21

人數(shù)

5

4

1

2

則這12名隊(duì)員年齡的眾數(shù)和中位數(shù)分別是(

A.1819B.18,19.5C.5,4D.5 4.5

【答案】A

【解析】

試題眾數(shù)表示最多的數(shù),本題中的眾數(shù)就是18;中位數(shù)是指處于中間的數(shù),則本題中的中位數(shù)為19

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)5,4,2,5,6的中位數(shù)是( )
A.5
B.4
C.2
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)若2x+5y﹣3=0,求4x32y的值.
(2)若26=a2=4b , 求a+b值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)河南省發(fā)改委發(fā)布消息,2016年全省固定資產(chǎn)投資繼續(xù)保持持續(xù)穩(wěn)定增長(zhǎng),全年完成39753億元,總量居全國(guó)第3位.將數(shù)據(jù)39753億用科學(xué)記數(shù)法表示為( )
A.3.9753×109
B.0.39753×1010
C.39.753×1011
D.3.9753×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文學(xué)社為解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問(wèn)卷調(diào)查,要求學(xué)生選出自己喜歡的個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下

各版面選擇人數(shù)的扇形統(tǒng)計(jì)圖 各版面選擇人數(shù)的條形統(tǒng)計(jì)圖

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)該調(diào)查的樣本容量為 , 第一版對(duì)應(yīng)扇形的圓心角為 ;

(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校有名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡第一版的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水電站興建了一個(gè)最大蓄水容量為12萬(wàn)米3的蓄水池,并配有2個(gè)流量相同的進(jìn)水口和1個(gè)出水口.某天從0時(shí)至12時(shí),進(jìn)行機(jī)組試運(yùn)行.其中,0時(shí)至2時(shí)打開(kāi)2個(gè)進(jìn)水口進(jìn)水;2時(shí),關(guān)閉1個(gè)進(jìn)水口減緩進(jìn)水速度,至蓄水池中水量達(dá)到最大蓄水容量后,隨即關(guān)閉另一個(gè)進(jìn)水口,并打開(kāi)出水口,直至12時(shí)蓄水池中的水放完為止.
若這3個(gè)水口的水流都是勻速的,且2個(gè)進(jìn)水口的水流速度一樣,水池中的蓄水量 y(萬(wàn)米3)與時(shí)間t(時(shí))之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象解決下列問(wèn)題:

(1)蓄水池中原有蓄水萬(wàn)米3 , 蓄水池達(dá)最大蓄水量12萬(wàn)米3的時(shí)間a的值為
(2)求線(xiàn)段BC、CD所表示的y與t之間的函數(shù)關(guān)系式;
(3)蓄水池中蓄水量維持在m萬(wàn)米3以上(含m萬(wàn)米3)的時(shí)間有3小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索發(fā)現(xiàn)】

如圖,是一張直角三角形紙片,B=60°,小明想從中剪出一個(gè)以B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線(xiàn)DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為

【拓展應(yīng)用】

如圖,在ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)

【靈活應(yīng)用】

如圖,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(B為所剪出矩形的內(nèi)角),求該矩形的面積.

【實(shí)際應(yīng)用】

如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)已知:如圖1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分線(xiàn),交CB邊的延長(zhǎng)線(xiàn)于點(diǎn)D.
圖1
求證:BD=AB+AC
(2)對(duì)于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分線(xiàn),交CB邊的延長(zhǎng)線(xiàn)于點(diǎn)D,如圖2,請(qǐng)你寫(xiě)出線(xiàn)段AC、AB、BD之間的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形紙片中,是邊上的點(diǎn),將紙片沿折疊,使點(diǎn)落在點(diǎn)處,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案