提出問題

(1)如圖1,在等邊△ABC中,點MBC上的任意一點(不含端點BC),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN. 求證:∠ABC=∠ACN.

類比探究 

(2)如圖2,在等邊△ABC中,點MBC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.

拓展延伸

(3)如圖3,在等腰△ABC中, BA=BC,點MBC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN =∠ABC. 連結(jié)CN. 試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

(1)證明:∵等邊△ABC,等邊△AMN

AB=AC,AM=AN,∠BAC=∠MAN=60°

∴∠BAM=∠CAN                   …………………………1分

∴△BAM≌△CAN(SAS)           …………………………2分

∴∠ABC=∠ACN                   …………………………3分

(2)解:結(jié)論∠ABC=∠ACN仍成立   . ………………………4分

理由如下:∵等邊△ABC,等邊△AMN  

AB=AC, AM=AN, ∠BAC=∠MAN=60°

∴∠BAM=∠CAN    ∴△BAM≌△CAN   ………………………5分

∴∠ABC=∠ACN                       ………………………6分

(3)解:∠ABC=∠ACN                  ………………………7分

理由如下:∵BA=BC, MA=MN,頂角∠ABC =∠AMN

∴底角∠BAC=∠MAN       ∴△ABC∽△AMN,     …………………8分

又∠BAM=∠BAC-MAC,∠CAN =MAN-MAC

 ∴∠BAM=∠CAN ∴△BAM∽△CAN           ……………9分                                 

∴∠ABC=∠ACN                              ………………………10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、我國宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如圖),此圖揭示了(a+b)n(n為非負(fù)整數(shù))展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.
例如:(a+b)0=1,它只有一項,系數(shù)為1;(a+b)1=a+b,它有兩項,系數(shù)分別為1,1,系數(shù)和為2;(a+b)2=a2+2ab+b2,它有三項,系數(shù)分別為1,2,1,系數(shù)和為4;(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數(shù)分別為1,3,3,1,系數(shù)和為8;

根據(jù)以上規(guī)律,解答下列問題:
(1)(a+b)4展開式共有
5
項,系數(shù)分別為
1,4,6,4,1
;
(2)(a+b)n展開式共有
n+1
項,系數(shù)和為
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,點D、E分別為△ABC的邊AB、AC的中點,將△ADE繞點D旋轉(zhuǎn)180°至△BDF.
(1)小明發(fā)現(xiàn)四邊形BCEF的形狀是平行四邊形,請你幫他把說理過程補齊.
理由是:因為△BDF是由△ADE繞點D旋轉(zhuǎn)180°得到的所以△ADE與△BDF全等且點A、D、B在同一條直線上點E、D、F也在同一條直線上.
所以BF=AE,∠F=∠
AED

可得BF∥
AC

又因為E是AC的中點,所以EC=AE,
所以BF=
EC

因此,四邊形BCEF是平行四邊形(根據(jù)
一組對邊平行切相等的四邊形是平行四邊形

(2)小明還發(fā)現(xiàn)在原有的△ABC中添加一個條件后,就可以使四邊形BFEC成為一種特殊的平行四邊形.你也來試試.
你認(rèn)為添加條件
∠C=90°
后,四邊形BFEC是
矩形
.(友情提示:我們將根據(jù)你所提出問題的難易程度,給予不同的分值.)理由是:
有一個角是直角的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

提出問題:小明是個愛思考的學(xué)生,在學(xué)習(xí)了三角函數(shù)后小明發(fā)現(xiàn):
sin90°=1,sin45°=
2
2
,90°是45°的兩倍,但三角函數(shù)值卻是
2
倍;
sin30°=
 
,sin60°=
 
,60°是30°的兩倍,但三角函數(shù)值卻是
 
倍,
考慮到cos45°,cos30°的三角函數(shù)值,估計sin2α=2sinαcosα,代入檢驗發(fā)現(xiàn)以上兩組角度都符合.
解決問題:那么如何證明sin2α=2sinαcosα呢?
小明思考再三,發(fā)現(xiàn)在△ABC中(圖2),高AD=ABsinB,可得S△ABC=
1
2
BC•ABsinB
,
利用這個結(jié)論證明上述命題結(jié)論.聰明的你也能解決這個問題嗎?
如圖2,在△ABC中,AB=AC,AD⊥BC于D,設(shè)∠BAD=α,求證:sin2α=2sinαcosα.
推廣應(yīng)用:解決了以上問題后,小明思考再三,終于發(fā)現(xiàn)了sin(α+β)與sinα,cosα,sinβ,cosβ的關(guān)系,
你能結(jié)合圖3證明出自己所猜想的sin(α+β)與sinα,cosα,sinβ,cosβ的關(guān)系嗎?
并利用上述關(guān)系求出sin75°的值(保留根號).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•青島)在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖3,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構(gòu)成運算結(jié)果.
歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構(gòu)成運算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構(gòu)成運算結(jié)果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個長為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,(x+x+2)2或四個長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關(guān)線段的長)
【研究不等關(guān)系】
提出問題:怎樣運用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫長y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時,表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關(guān)線段的長)

查看答案和解析>>

同步練習(xí)冊答案