對(duì)于正實(shí)數(shù)ab,定義新運(yùn)算“*”如下:,則4*(4*4)等于( 。

A. 1         B. 2         C.          D. 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,∴a+b≥2
ab
,只有點(diǎn)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
(2)思考驗(yàn)證:
①如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件;
②探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4)P為雙曲線y=
12
x
(x>0)
上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab
,
又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,當(dāng)且僅當(dāng)a、b滿足
 
時(shí),a+b有最小值2
p

(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗(yàn)證a+b≥2
ab
成立,并指出等號(hào)成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有點(diǎn)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

(2)思考驗(yàn)證:如圖,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過點(diǎn)C作CD⊥AB,垂足精英家教網(wǎng)為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

若m>0,只有當(dāng)m=
 
時(shí),2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點(diǎn)B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1于點(diǎn)D,試求當(dāng)線段CD最短精英家教網(wǎng)時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.若ab為定值P,則a+b≥2
P
,只有當(dāng)a=b時(shí),a+b有最小值2
P

(1)如圖1,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與點(diǎn)A、B不重合)過點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.根據(jù)圖象驗(yàn)證,a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.

(2)根據(jù)上述內(nèi)容,回答下列問題
①若m>0,只有當(dāng)m=
1
1
時(shí),m+
1
m
有最小值為
2
2

②如圖2所示:A(-3,0),B(0,-4),P為雙曲線y=
12
x
(x>0)
上任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,求四邊形ABCD面積的最小值,并說明此時(shí)ABCD的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案