【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,⊙P的半徑為1cm,且OP=6cm,如果P以1cm/s的速度沿由A向B的方向移動,那么多少秒后P與直線CD相切( 。

A. 4或8 B. 4或6 C. 8 D. 4

【答案】A

【解析】

直線CD⊙P相切時,有兩種情況,需分類討論.

如圖;

(1)CD⊙P右側(cè),且與⊙P相切時,設(shè)切點為E,連接PE;

Rt△OEP中,∠EOP=∠AOC=30,PE=1cm,

∴OP=2PE=2cm,

故此時O點運動了6cm2cm=4cm,

運動的時間為:4÷1=4s;

(2)CD⊙P左側(cè),且與⊙P相切時,同理可求得OP=2cm;

此時O點運動了6cm+2cm=8cm,

運動的時間為:8÷1=8s,

因此經(jīng)過48sCD⊙P相切。

故答案選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,D在邊AC上,且

如圖1,填空______,______

如圖2,若M為線段AC上的點,過M作直線H,分別交直線AB、BC與點N、E

求證:是等腰三角形;

試寫出線段AN、CE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)探究新知:如圖1,已知△ABC△ABD的面積相等, 試判斷ABCD的位置關(guān)系,并說明理由.

2)結(jié)論應(yīng)用:如圖2,點M,N在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,垂足分別為E,F 試證明:MN∥EF

3)變式探究:如圖3,點MN在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,過點MMG⊥x軸,過點NNH⊥y軸,垂足分別為E、F、GH 試證明:EF ∥GH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁薄型紙比厚型紙輕0.8克,求A4薄型紙每頁的質(zhì)量.(墨的質(zhì)量忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張大伯計劃建一個面積為72平方米的矩形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻(墻長15米),另外的部分(包括中間的隔墻)用30米的竹籬笆圍成,如圖.

1)請你通過計算幫助張大伯設(shè)計出圍養(yǎng)雞場的方案.

2)在上述條件不變的情況下,能圍出比72平方米更大的養(yǎng)雞場嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.

(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);

(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,BC=AC,以BC為直徑的O與邊AB、AC分別交于點D、E,DFAC于點F.

(1)求證:點D是AB的中點;

(2)判斷DF與O的位置關(guān)系,并證明你的結(jié)論;

(3)若O的半徑為10,sinB=,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AB=5,BC=8,cosB=,點EBC邊上的動點,當以CE為半徑的⊙C與邊AD有兩個交點時,半徑CE的取值范圍是( 。

A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)勾股定理的證法多樣,其中“面積法”是常用方法,小明發(fā)現(xiàn):當四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.(寫出勾股定理的內(nèi)容并證明)

2)已知實數(shù)x,yz滿足:,試問長度分別為x、y、z的三條線段能否組成一個三角形?如果能,請求出該三角形的面積;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案