【題目】如圖,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度數(shù).

【答案】解:∵AD是△ABC的高,∠C=70°,
∴∠DAC=20°,
∵BE平分∠ABC交AD于E,
∴∠ABE=∠EBD,
∵∠BED=64°,
∴∠ABE+∠BAE=64°,
∴∠EBD+64°=90°,
∴∠EBD=26°,
∴∠BAE=38°,
∴∠BAC=∠BAE+∠CAD=38°+20°=58°
【解析】由已知條件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,進而得出∠ABE+∠BAE=64°,求出∠EBD=26°,進而得出答案.
【考點精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對三角形的外角的理解,了解三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算x·2x2的結(jié)果是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備建一個面積為200平方米的矩形花圃,它的長比寬多10米,設(shè)花圃的寬為x米,則可列方程為:( )

A. xx-10=200 B. 2x+2x-10=200

C. xx+10=200 D. 2x+2x+10=200

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)如圖①,BF垂直CE于點F,交CD于點G,試說明AE=CG;

(2)如圖②,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點M,則圖中與BE相等的線段是 , 并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:[(a+b)2-(a-b)2]·a,其中a=-1,b5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)22+(﹣4)+(﹣2)+4
(2)(﹣ +1 )×(﹣24)
(3)3﹣6÷(﹣2)×|﹣ |
(4)2a﹣(3b﹣a)+b
(5)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2
(6)(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】震驚世界的MH370失聯(lián)事件發(fā)生后第30天,中國“海巡01”輪在南印度洋海域搜索過程中首次偵聽到疑是飛機黑匣子的脈沖信號,探測到的信號所在海域水深4500米左右,其中4500用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為:A(-3,0),B(-1,-2),C(-2,2).

1)請在圖中畫出ABCB點順時針旋轉(zhuǎn)90°后的圖形ABC′.

2)請直接寫出以A、B、C為頂點平行四邊形的第4個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一塊長為a,寬為2b的長方形鐵皮中,以2b為直徑分別剪掉兩個半圓,
(1)求剩下鐵皮的面積(用含a,b的式子表示);
(2)當a=4,b=1時,求剩下鐵皮的面積是多少?(π取3.14)

查看答案和解析>>

同步練習冊答案