如圖,AB是⊙O的直徑,∠BAC=60°,P是OB上一點,過P作AB的垂線與AC的延長線交于點Q,過點C的切線CD交PQ于D,連接OC.
(1)求證:△CDQ是等腰三角形;
(2)如果△CDQ≌△COB,求BP:PO的值.

【答案】分析:(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,則有∠OCB=30°,再結(jié)合CD時切線,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ是等腰三角形;
(2)可以假設AB=2,則OB=OA=OC=1,利用勾股定理可得BC=;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的長;在直角三角形APQ中,利用30°所對的邊等于斜邊的一半,又可求AP,而OP=AP-OA,即可求OP,BP也就可求,從而得出BP:PO的值.
解答:(1)證明:由已知得∠ACB=90°,∠ABC=30°,
∴∠Q=30°,∠BCO=∠ABC=30°;
∵CD是⊙O的切線,CO是半徑,
∴CD⊥CO,
∴∠DCQ=∠BCO=30°,
∴∠DCQ=∠Q,
故△CDQ是等腰三角形.

(2)解:設⊙O的半徑為1,則AB=2,OC=1,BC=
∵等腰三角形CDQ與等腰三角形COB全等,
∴CQ=BC=
∴AQ=AC+CQ=1+,
∴AP=AQ=,
∴BP=AB-AP=,
∴PO=AP-AO=
∴BP:PO=
點評:此題綜合考查了等腰三角形的判定和圓周角的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案