如圖,G是△ABC的重心,直線L過A點與BC平行.若直線CG分別與AB,L交于D,E兩點,直線BG與AC交于F點,則△AED的面積:四邊形ADGF的面積=


  1. A.
    1:2
  2. B.
    2:1
  3. C.
    2:3
  4. D.
    3:2
D
分析:根據(jù)重心的概念得出D,F(xiàn)分別是三角形的中點.若設△ABC的面積是2,則△BCD的面積和△BCF的面積都是1.又因為BG:GF=CG:GD,可求得△CGF的面積.則四邊形ADGF的面積也可求出.根據(jù)ASA可以證明△ADE≌△BDC,則△ADE的面積是1.則△AED的面積:四邊形ADGF的面積可求.
解答:設三角形ABC的面積是2
∴三角形BCD的面積和三角形BCF的面積都是1
∵BG:GF=CG:GD=2
∴三角形CGF的面積是
∴四邊形ADGF的面積是2-1-=
∵△ADE≌△BDC(ASA)
∴△ADE的面積是1
∴△AED的面積:四邊形ADGF的面積=1:=3:2.
故選D.
點評:此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,∠ADC=60°,點C′與點C關于直線AD對稱,若BC=6cm,則點B與點C′之間的距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,已知∠B=62°,則∠CAO的度數(shù)是(  )
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,AD是△ABC的角平分線,∠B=60°,E,F(xiàn)分別在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,圖中長度一定與DE相等的線段共有
3
條.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O是△ABC的外接圓,AB是直徑,若∠B=50°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的外接圓直徑,AD=
2
,∠B=∠DAC,則AC的值為
1
1

查看答案和解析>>

同步練習冊答案