【題目】如圖,直線y=x與反比例函數(shù)y=(x>0)的圖象相交于點(diǎn)D,點(diǎn)A為直線y=x上一點(diǎn),過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,交反比例函數(shù)y=(x>0)的圖象于點(diǎn)B,連接BD.
(1)若點(diǎn)B的坐標(biāo)為(8,2),則k= ,點(diǎn)D的坐標(biāo)為 ;
(2)若AB=2BC,且△OAC的面積為18,求k的值及△ABD的面積.
【答案】(1)16,(4,4);(2)12,12﹣
【解析】
(1)由點(diǎn)B(8,2)在反比例函數(shù)的圖象上,代入可求k的值,將反比例函數(shù)的關(guān)系式與y=x聯(lián)立方程組,可以求出交點(diǎn)坐標(biāo),進(jìn)而確定點(diǎn)D的坐標(biāo);
(2)點(diǎn)A在直線y=x上,可知OC=AC,由△OAC的面積為18可求出AC的長(zhǎng),確定點(diǎn)A的坐標(biāo),由AB=2BC,可求AB、BC的長(zhǎng),確定點(diǎn)B的坐標(biāo),進(jìn)而求k得值,用(1)的方法可求點(diǎn)D的坐標(biāo),利用三角形的面積公式就可以求出三角形的面積.
解:(1)把B(8,2)代入得:k=2×8=16,
∴反比例函數(shù)的關(guān)系式為,
由題意得:
解得:,(舍去)
∴點(diǎn)D的坐標(biāo)為(4,4)
故答案為:16,(4,4)
(2)過(guò)點(diǎn)D作DE⊥OC,DF⊥AC,垂足為E、F,如圖所示:
∵點(diǎn)A在第一象限y=x上,
∴AC=OC,
又∵△OAC的面積為18,
∴AC=OC=6,
∵AB=2BC,
∴AB=4,BC=2,
∴點(diǎn)B(6,2),代入得,k=12;
設(shè)點(diǎn)D(a,a)代入得,a=(a>0)
∴D(,),即OE=DE=,
∴DF=EC=OC﹣OE=6﹣,
∴△ABD的面積=ABDF=×4×(6﹣)=12﹣;
因此k的值為12,∴△ABD的面積為12﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心在坐標(biāo)原點(diǎn)的⊙O,與坐標(biāo)軸的交點(diǎn)分別為A、B和C、D.弦CM交OA于P,連結(jié)AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的兩根.
(1)求C點(diǎn)的坐標(biāo);
(2)寫出直線CM的函數(shù)解析式;
(3)求△AMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題為真命題的是( )
A.兩組身高數(shù)據(jù)的方差分別是,,那么乙組的身高比較整齊
B.“明天下雨”是必然事件
C.一組數(shù)據(jù)3,5,4,5,6,7的眾數(shù)、中位數(shù)和平均數(shù)都是5
D.為了解某燈管的使用壽命,可以采用普查的方式進(jìn)行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點(diǎn)分別為M、N ,與x軸分別相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)和C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),
(1))函數(shù)的頂點(diǎn)坐標(biāo)為 ;當(dāng)二次函數(shù)L1 ,L2 的值同時(shí)隨著的增大而增大時(shí),的取值范圍是 ;
(2)當(dāng)AD=MN時(shí),求的值,并判斷四邊形AMDN的形狀(直接寫出,不必證明);
(3)當(dāng)B,C是線段AD的三等分點(diǎn)時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對(duì)稱軸是直線;③足球被踢出時(shí)落地;④足球被踢出時(shí),距離地面的高度是.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,為邊上一動(dòng)點(diǎn),于點(diǎn),于點(diǎn)為的中點(diǎn),則的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:
材料一:如果兩個(gè)兩位數(shù)和將它們各自的十位數(shù)字和個(gè)位數(shù)字交換位置后得到兩個(gè)完全不同的新數(shù),,這兩個(gè)兩位數(shù)的乘積與交換后的兩個(gè)兩位數(shù)的乘積相等,則稱這樣的兩個(gè)兩位數(shù)為一對(duì)“有緣數(shù)對(duì)”.
例如:,所以,46和96是一對(duì)“有緣數(shù)對(duì)”,
材料二:在進(jìn)行一些數(shù)學(xué)式計(jì)算時(shí),我們可以把某一單項(xiàng)式或多項(xiàng)式看作一個(gè)整體,運(yùn)用整體換元,使得運(yùn)算更簡(jiǎn)單.
例如:計(jì)算,令:,
原式
解決如下問(wèn)題:
(1)①請(qǐng)任寫一對(duì)“有緣數(shù)對(duì)”____________和____________.
②并探究“有緣數(shù)對(duì)”和,,,,之間滿足怎樣的等量關(guān)系.并寫出證明過(guò)程.
(2)若兩個(gè)兩位數(shù)與是一對(duì)“有緣數(shù)對(duì),請(qǐng)求出這兩個(gè)兩位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售公司年終進(jìn)行業(yè)績(jī)考核,人事部門把考核結(jié)果按照A,B,C,D四個(gè)等級(jí),繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,如圖1,圖2.
參加考試的人數(shù)是______,扇形統(tǒng)計(jì)圖中D部分所對(duì)應(yīng)的圓心角的度數(shù)是______,請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
若公司領(lǐng)導(dǎo)計(jì)劃從考核人員中選一人交流考核意見(jiàn),求所選人員考核為A等級(jí)的概率;
為推動(dòng)公司進(jìn)一步發(fā)展,公司決定計(jì)劃兩年內(nèi)考核A等級(jí)的人數(shù)達(dá)到30人,求平均每年的增長(zhǎng)率精確到,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com