一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在A(yíng)O和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿(mǎn)足題中條件的點(diǎn)D也隨之在直線(xiàn)BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)
(1)求出∠3=∠4,∠BOP=∠PED=90°,根據(jù)AAS證△BPO≌△PDE即可;
(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;
(3)設(shè)OP=CP=x,求出AP=3x,CD=x,即可得出答案.
【解析】(1)證明:∵PB=PD,
∴∠2=∠PBD,
∵AB=BC,∠ABC=90°,
∴∠C=45°,
∵BO⊥AC,
∴∠1=45°,
∴∠1=∠C=45°,
∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,
∴∠3=∠4,
∵BO⊥AC,DE⊥AC,
∴∠BOP=∠PED=90°,
在△BPO和△PDE中
∴△BPO≌△PDE(AAS);
(2)證明:由(1)可得:∠3=∠4,
∵BP平分∠ABO,
∴∠ABP=∠3,
∴∠ABP=∠4,
在△ABP和△CPD中
∴△ABP≌△CPD(AAS),
∴AP=CD.
(3)解:CD′與AP′的數(shù)量關(guān)系是CD′=AP′.
理由是:設(shè)OP=PC=x,則AO=OC=2x=BO,
則AP=2x+x=3x,
由(2)知BO=PE,
PE=2x,CE=2x﹣x=x,
∵∠E=90°,∠ECD=∠ACB=45°,
∴DE=x,由勾股定理得:CD=x,
即AP=3x,CD=x,
∴CD′與AP′的數(shù)量關(guān)系是CD′=AP′
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(帶解析) 題型:解答題
一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在A(yíng)O和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿(mǎn)足題中條件的點(diǎn)D也隨之在直線(xiàn)BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在A(yíng)O和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿(mǎn)足題中條件的點(diǎn)D也隨之在直線(xiàn)BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com