一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點O,點PD分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據上述思路,請你完整地書寫本題的證明過程.
(2)特殊位置,證明結論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′與AP′的數(shù)量關系.(不必寫解答過程)
考點:
全等三角形的判定與性質.
分析:
(1)求出∠3=∠4,∠BOP=∠PED=90°,根據AAS證△BPO≌△PDE即可;
(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;
(3)設OP=CP=x,求出AP=3x,CD=x,即可得出答案.
解答:
(1)證明:∵PB=PD,
∴∠2=∠PBD,
∵AB=BC,∠ABC=90°,
∴∠C=45°,
∵BO⊥AC,
∴∠1=45°,
∴∠1=∠C=45°,
∵∠3=∠PBO﹣∠1,∠4=∠2﹣∠C,
∴∠3=∠4,
∵BO⊥AC,DE⊥AC,
∴∠BOP=∠PED=90°,
在△BPO和△PDE中
∴△BPO≌△PDE(AAS);
(2)證明:由(1)可得:∠3=∠4,
∵BP平分∠ABO,
∴∠ABP=∠3,
∴∠ABP=∠4,
在△ABP和△CPD中
∴△ABP≌△CPD(AAS),
∴AP=CD.
(3)解:CD′與AP′的數(shù)量關系是CD′=AP′.
理由是:設OP=PC=x,則AO=OC=2x=BO,
則AP=2x+x=3x,
由(2)知BO=PE,
PE=2x,CE=2x﹣x=x,
∵∠E=90°,∠ECD=∠ACB=45°,
∴DE=x,由勾股定理得:CD=x,
即AP=3x,CD=x,
∴CD′與AP′的數(shù)量關系是CD′=AP′
點評:
本題考查了全等三角形的性質和判定,等腰直角三角形性質,等腰三角形性質等知識點的綜合應用,主要考查學生的推理和計算能力.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(帶解析) 題型:解答題
一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點O,點PD分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據上述思路,請你完整地書寫本題的證明過程.
(2)特殊位置,證明結論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′與AP′的數(shù)量關系.(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江湖州卷)數(shù)學(解析版) 題型:解答題
一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點O,點PD分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.
(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:
根據上述思路,請你完整地書寫本題的證明過程.
(2)特殊位置,證明結論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′與AP′的數(shù)量關系.(不必寫解答過程)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com