如圖1,正方形每條邊上放置相同數(shù)目的小球,設(shè)一條邊上的小球數(shù)為n,請用含n的代數(shù)式表示正方形邊上的所有小球數(shù)         ;將正方形改為立方體,如圖2,每條邊上同樣放置相同數(shù)目的小球, 設(shè)一條邊上的小球數(shù)仍為n,請用含n的代數(shù)式表示立方體上的所有小球數(shù)             

 

【答案】

4n-4,   12n-16

【解析】

試題分析:如圖1,正方形每條邊上放置相同數(shù)目的小球,設(shè)一條邊上的小球數(shù)為n,四條邊上的小球數(shù)是4n,然后相鄰的兩條邊相交,這樣就有重合的,正方形有四個這樣的重合點,所以真實的要比4n少4,所以正方形邊上的所有小球數(shù)=4n-4;將正方形改為立方體,如圖2,每條邊上同樣放置相同數(shù)目的小球, 設(shè)一條邊上的小球數(shù)仍為n,正方體總共有12條邊,所以這樣計算總共有12n小球,因為在每個頂點處,是三條邊的交點,三個小球合為一個小球,所以實際的要少3-1=2,而正方體有8個頂點,所以要比12n小球少,因此立方體上的所有小球數(shù)=

考點:正方形,正方體

點評:本題考查正方形,正方體,解答本題要求考生熟悉正方形,正方體,然后通過審題,找出總的小球與邊數(shù)及每邊小球數(shù)之間的關(guān)系來是本題的關(guān)鍵

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE隨點Q運動).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GF和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:遼寧省中考真題 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動)。
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上。
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動).

(1)求這條拋物線的函數(shù)表達(dá)式;

(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;

(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上.

①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?

②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年遼寧省本溪市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE隨點Q運動).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GF和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.

查看答案和解析>>

同步練習(xí)冊答案