如圖1,正方形每條邊上放置相同數(shù)目的小球,設(shè)一條邊上的小球數(shù)為n,請用含n的代數(shù)式表示正方形邊上的所有小球數(shù) ;將正方形改為立方體,如圖2,每條邊上同樣放置相同數(shù)目的小球, 設(shè)一條邊上的小球數(shù)仍為n,請用含n的代數(shù)式表示立方體上的所有小球數(shù) .
4n-4, 12n-16
【解析】
試題分析:如圖1,正方形每條邊上放置相同數(shù)目的小球,設(shè)一條邊上的小球數(shù)為n,四條邊上的小球數(shù)是4n,然后相鄰的兩條邊相交,這樣就有重合的,正方形有四個這樣的重合點,所以真實的要比4n少4,所以正方形邊上的所有小球數(shù)=4n-4;將正方形改為立方體,如圖2,每條邊上同樣放置相同數(shù)目的小球, 設(shè)一條邊上的小球數(shù)仍為n,正方體總共有12條邊,所以這樣計算總共有12n小球,因為在每個頂點處,是三條邊的交點,三個小球合為一個小球,所以實際的要少3-1=2,而正方體有8個頂點,所以要比12n小球少,因此立方體上的所有小球數(shù)=
考點:正方形,正方體
點評:本題考查正方形,正方體,解答本題要求考生熟悉正方形,正方體,然后通過審題,找出總的小球與邊數(shù)及每邊小球數(shù)之間的關(guān)系來是本題的關(guān)鍵
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:遼寧省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(四川綿陽卷)數(shù)學(xué) 題型:解答題
如圖1,在平面直角坐標(biāo)系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(biāo)(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標(biāo),不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年遼寧省本溪市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com