【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學知識呢?下面請你解決以下問題:
(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關系,并說明理由;
(2)請你直接利用以上結論,回答下列兩個問題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經過點B、C.若∠A=50°,則∠ABX+∠ACX= ;
②如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).
【答案】(1)∠BDC=∠A+∠B+∠C(2)①40°②50°
【解析】試題分析:(1)連接AD并延長,根據(jù)三角形的外角和內角關系解答;
(2)①利用(1)的結論,直接計算出∠ABX+∠ACX的度數(shù);
②圖(3)利用(1)的結論,根據(jù)∠BDC=135°,∠BG1C=67°,計算出相等的角:∠DBG4+∠DCG4的和,再次利用(1)的結論,求出∠A的度數(shù).
試題解析:(1)∠BDC=∠A+∠B+∠C.理由:
連接AD并延長到M.
因為∠BDM=∠BAD+∠B,∠CDM=∠CAD+∠C,
所以∠BDM+∠CDM=∠BAD+∠B+∠CAD+∠C,
即∠BDC=∠BAC+∠B+∠C.
(2)①由(1)知:∠BXC=∠A+∠ABX+∠ACX,
由于∠BXC=90°,∠A=50°
所以∠ABX+∠ACX
=∠BXC﹣∠A
=90°﹣50°
=40°.
②在箭頭圖G1BDC中
因為∠BDC=∠G1+∠G1BD+∠G1CD,
又∵∠BDC=135°,∠BG1C=67°
∵∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4
∴4(∠DBG4+∠DCG4)=135°﹣67°
∴∠DBG4+∠DCG4=17°.
∴∠ABG1+∠ACG1=17°
∵在箭頭圖G1BAC中
∵∠BG1C=∠A+∠G1BA+∠G1CA,
又∵∠BG1C=67°,
∴∠A=50°.
答:∠A的度數(shù)是50°.
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是一個三角形的紙片,點D,E分別是△ABC邊AB,AC上的兩點.
(1)如圖①,如果沿直線DE折疊,則∠BDA′與∠A的關系是____________;
(2)如果折成圖②的形狀,猜想∠BDA′,∠CEA′和∠A的關系,并說明理由;
(3)如果折成圖③的形狀,猜想∠BDA′,∠CEA′和∠A的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
解答“已知,且,,確定的取值范圍”有如下解,
解:∵,
∴.
又∵,
∴.
∴.
又∵,
∴,①
同理得:.②
由①②得.
∴的取值范圍是.
請按照上述方法,完成下列問題:
()已知,且,,求的取值范圍.
()已知,,若,且,求得取值范圍(結果用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B在反比例函數(shù)y=的圖象上,過點A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )
A.2 B.4 C.﹣2 D.﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊相同的含30°角的直角三角板按圖①的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.固定三角板A1B1C,然后將三角板ABC繞點C順時針方向旋轉至圖②的位置,AB與A1C、A1B1分別交于點D、E,AC與A1B1交于點F.
(1)當旋轉角等于20°時,∠BCB1=________度;
(2)當旋轉角等于多少度時,AB與A1B1垂直?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:如圖,已知∠B=∠CGF,∠DGF=∠F,求證∠B+∠F=180°.
證明:∵∠B= (已知),
∴AB∥C( ),
∵∠DGF= (已知),
∴CD∥EF( ),
∴AB∥ ( )
∴∠B+ =180°( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ABC的中線AD、BE相交于點F,下列結論正確的有 ( )
①S△ABD=S△DCA;② S△AEF=S△BDF;③S四邊形EFDC=2S△AEF;④S△ABC=3S△ABF
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,BE⊥AC,垂足為E,CF⊥AB,垂足為F,點D是BC的中點,BE,CF交于點M.
(1)如果AB=AC,求證:△DEF是等邊三角形;
(2)如果AB≠AC,試猜想△DEF是不是等邊三角形?如果△DEF是等邊三角形,請加以證明;如果△DEF不是等邊三角形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com