【題目】將兩塊相同的含30°角的直角三角板按圖①的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.固定三角板A1B1C,然后將三角板ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)至圖②的位置,AB與A1C、A1B1分別交于點(diǎn)D、E,AC與A1B1交于點(diǎn)F.
(1)當(dāng)旋轉(zhuǎn)角等于20°時(shí),∠BCB1=________度;
(2)當(dāng)旋轉(zhuǎn)角等于多少度時(shí),AB與A1B1垂直?請(qǐng)說(shuō)明理由.
【答案】(1)160°,(2)見(jiàn)解析
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠ACA1=20°,再根據(jù)直角三角形兩銳角互余求出∠BCD,然后根據(jù)∠BCB1=∠BCD+∠A1CB1進(jìn)行計(jì)算即可得解;
(2)根據(jù)直角三角形兩銳角互余求出∠A1DE,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠ACA1,即為旋轉(zhuǎn)角的度數(shù).
試題解析:(1)由旋轉(zhuǎn)的性質(zhì)得,∠ACA1=20°,
∴∠BCD=∠ACB-∠ACA1=90°-20°=70°,
∴∠BCB1=∠BCD+∠A1CB1,
=70°+90°,
=160°;
(2)∵AB⊥A1B1,
∴∠A1DE=90°-∠B1A1C=90°-30°=60°,
∴∠ACA1=∠A1DE-∠BAC=60°-30°=30°,
∴旋轉(zhuǎn)角為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,點(diǎn)P是直線l3上一動(dòng)點(diǎn)
(1)如圖1,當(dāng)點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí),∠PAC,∠APB,∠PBD之間存在什么數(shù)量關(guān)系?請(qǐng)你猜想結(jié)論并說(shuō)明理由.
(2)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請(qǐng)直接寫出∠PAC,∠APB,∠PBD之間的數(shù)量關(guān)系,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.
(1)求證:△ABD是等邊三角形;
(2)若BD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3,…組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2015秒時(shí),點(diǎn)P的坐標(biāo)是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖(1)是我們常見(jiàn)的“箭頭圖”,其中隱藏著哪些數(shù)學(xué)知識(shí)呢?下面請(qǐng)你解決以下問(wèn)題:
(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你直接利用以上結(jié)論,回答下列兩個(gè)問(wèn)題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C.若∠A=50°,則∠ABX+∠ACX= ;
②如圖(3),∠ABD,∠ACD的五等分線分別相交于點(diǎn)G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,BC∥OA,∠B=∠A=100°,點(diǎn)E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列結(jié)論中正確的是___________:
①OB∥AC ②∠EOC=45°
③∠OCB:∠OFB=1:3 ④若∠OEB=∠OCA,則∠OCA=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】何老師安排喜歡探究問(wèn)題的小明解決某個(gè)問(wèn)題前,先讓小明看了一個(gè)有解答過(guò)程的例題.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
為什么要對(duì)2n2進(jìn)行了拆項(xiàng)呢?
聰明的小明理解了例題解決問(wèn)題的方法,很快解決了下面兩個(gè)問(wèn)題.相信你也能很好的解決下面的這兩個(gè)問(wèn)題,請(qǐng)寫出你的解題過(guò)程..
解決問(wèn)題:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三邊長(zhǎng),滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長(zhǎng),且c為整數(shù),那么c可能是哪幾個(gè)數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,電力公司在電線桿上的C處引兩條等長(zhǎng)的拉線CE、CF固定電線桿CD,拉線CE和地面成60°角,在離電線桿9米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米.
(1)求CD的長(zhǎng)(結(jié)果保留根號(hào));
(2)求EF的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點(diǎn)。
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com