【題目】

如圖,拋物線L: (常數(shù)t>0)與x軸從左到右的交點(diǎn)為BA,過線段OA的中點(diǎn)MMPx軸,交雙曲線于點(diǎn)P,且OA·MP=12.

1)求k值;

2)當(dāng)t=1時(shí),求AB長,并求直線MPL對(duì)稱軸之間的距離;

3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo);

4)設(shè)L與雙曲線有個(gè)交點(diǎn)的橫坐標(biāo)為x0,且滿足4x06,通過L位置隨t變化的過程,直接寫出t的取值范圍.

【答案】(1)6;(2);(3)當(dāng)t-2,即t4時(shí),頂點(diǎn)(t-2,2)就是G的最高點(diǎn);當(dāng)t>4時(shí),L與MP的交點(diǎn)()就是G的最高點(diǎn).(4)(4).

【解析】

試題分析:(1)設(shè)設(shè)點(diǎn)P(x,y),則MP=y,由OA的中點(diǎn)為M知OA=2x,代入OAMP=12,即可得xy=6,即k=6;(2)當(dāng)t=1時(shí),令y=0,0=,解得.即可得AB=4,求得拋物線的對(duì)稱軸,根據(jù)點(diǎn)M的坐標(biāo)即可得直線MP與L對(duì)稱軸之間的距離;(3)由拋物線的解析式可得A(t,0),B(t-4,0),即可得拋物線的對(duì)稱軸為x=t-2,又因MP為直線x=,當(dāng)t-2,即t4時(shí),頂點(diǎn)(t-2,2)就是G的最高點(diǎn);當(dāng)t>4時(shí),L與MP的交點(diǎn)()就是G的最高點(diǎn).(4)對(duì)雙曲線,當(dāng)4x06時(shí),1y,即L與雙曲線C(4,),D(6,1)之間的一段有個(gè)交點(diǎn).=,解得由1=,解得;隨著t的逐漸增大,L的位置隨著點(diǎn)A(t,0)向右平移,如圖3所示.當(dāng)t=5時(shí),L右側(cè)過點(diǎn)C;當(dāng)時(shí),L右側(cè)過點(diǎn)D;即.當(dāng)時(shí),L右側(cè)離開了點(diǎn)D,而左側(cè)未到點(diǎn)C,即L與該段無交點(diǎn),舍去.當(dāng)t=7時(shí),L左側(cè)過點(diǎn)C;當(dāng)時(shí),L左側(cè)過點(diǎn)D;即.

試題解析:(1)設(shè)點(diǎn)P(x,y),則MP=y,

由OA的中點(diǎn)為M知OA=2x,代入OAMP=12,

,即xy=6,

k=xy=6.

(2)當(dāng)t=1時(shí),令y=0,0=.

由B在A的左邊,得B(-3,0),A(1,0),AB=4.

L的對(duì)稱軸為x=-1,而M(,0),

MP與L對(duì)稱軸的距離為.

(3)A(t,0),B(t-4,0),

L的對(duì)稱軸為x=t-2,

又MP為x=

當(dāng)t-2,即t4時(shí),頂點(diǎn)(t-2,2)就是G的最高點(diǎn);

當(dāng)t>4時(shí),L與MP的交點(diǎn)()就是G的最高點(diǎn).

(4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡計(jì)算:(﹣a)6÷a3= , a(a﹣1)﹣a2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,且AB≠AD,過O作OE⊥BD交BC于點(diǎn)E,若平行四邊形ABCD的周長為20,則△CDE的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛.1.5小時(shí)后兩車相距70km;2小時(shí)后兩車相遇.相遇時(shí)快車比慢車多行駛40km.

(1)甲乙兩地之間相 km;

(2)求快車和慢車行駛的速度;

(3)若快車到達(dá)乙地后立刻返回甲地,慢車到達(dá)甲地后停止行駛,快車出發(fā)多長時(shí)間,兩車相距35km?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù)aB點(diǎn)表示數(shù)b,ab滿足+=0;

1)點(diǎn)A表示的數(shù)為_______;點(diǎn)B表示的數(shù)為__________;

2)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),

①當(dāng)t=1時(shí),甲小球到原點(diǎn)的距離=_______;乙小球到原點(diǎn)的距離=_______;當(dāng)t=3時(shí),甲小球到原點(diǎn)的距離=_______;乙小球到原點(diǎn)的距離=_______

②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請(qǐng)說明理由。若能,請(qǐng)求出甲,乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點(diǎn)A在x軸上,并過點(diǎn)B(0,1),直線n:y=﹣x+與x軸交于點(diǎn)D,與拋物線m的對(duì)稱軸l交于點(diǎn)F,過B點(diǎn)的直線BE與直線n相交于點(diǎn)E(﹣7,7).

(1)求拋物線m的解析式;

(2)P是l上的一個(gè)動(dòng)點(diǎn),若以B,E,P為頂點(diǎn)的三角形的周長最小,求點(diǎn)P的坐標(biāo);

(3)拋物線m上是否存在一動(dòng)點(diǎn)Q,使以線段FQ為直徑的圓恰好經(jīng)過點(diǎn)D?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點(diǎn)P45)和點(diǎn)Qa,b)關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)Q的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們?cè)谔骄慷魏瘮?shù)的圖象與性質(zhì)時(shí),首先從y=ax2(a≠0)的形式開始研究,最后到y(tǒng)=a(x-h)2+k(a≠0)的形式,這種探究問題的思路體現(xiàn)的數(shù)學(xué)思想是( )

A. 轉(zhuǎn)化 B. 由特殊到一般 C. 分類討論 D. 數(shù)形結(jié)合

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段能組成三角形的是( )
A.6,8 ,10
B.4,5,9
C.1,2,4
D.5,15,8

查看答案和解析>>

同步練習(xí)冊(cè)答案