【題目】如圖,直線l1的解析表達(dá)式為:y=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1 , l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請直接寫出點(diǎn)P的坐標(biāo).
【答案】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,
∴x=1,
∴D(1,0);
(2)設(shè)直線l2的解析表達(dá)式為y=kx+b,
由圖象知:x=4,y=0;x=3,y=-,代入表達(dá)式y(tǒng)=kx+b,
∴ ,
∴,
∴直線l2的解析表達(dá)式為y=x-6;
(3)由,
解得,
∴C(2,﹣3),
∵AD=3,
∴S△ADC=×3×|﹣3|=;
(4)△ADP與△ADC底邊都是AD,面積相等所以高相等,△ADC高就是點(diǎn)C到直線AD的距離,即C縱坐標(biāo)的絕對值=|﹣3|=3,
則P到AD距離=3,
∴P縱坐標(biāo)的絕對值=3,點(diǎn)P不是點(diǎn)C,
∴點(diǎn)P縱坐標(biāo)是3,
∵y=1.5x﹣6,y=3,
∴1.5x﹣6=3
x=6,
所以P(6,3).
【解析】(1)已知l1的解析式,令y=0求出x的值即可;
(2)設(shè)l2的解析式為y=kx+b,由圖聯(lián)立方程組求出k,b的值;
(3)聯(lián)立方程組,求出交點(diǎn)C的坐標(biāo),繼而可求出S△ADC;
(4)△ADP與△ADC底邊都是AD,面積相等所以高相等,△ADC高就是點(diǎn)C到AD的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD交于點(diǎn)O,將BD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°到BE所在的位置,BE與AD交于點(diǎn)F,分別連接DE、CE.
(1)求證:DE=DF;
(2)求證:AE∥BD;
(3)求tan∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點(diǎn)關(guān)于AC的對稱點(diǎn),反比例函數(shù)y= 的圖象經(jīng)過D點(diǎn).
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點(diǎn)N,y軸正半軸上一點(diǎn)M,且四邊形ABMN是平行四邊形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰和底的長分別是一元二次方程x2﹣4x+3=0的根,則該三角形的周長可以是( )
A.5
B.7
C.5或7
D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com