【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,將BD繞點B逆時針旋轉30°到BE所在的位置,BE與AD交于點F,分別連接DE、CE.
(1)求證:DE=DF;
(2)求證:AE∥BD;
(3)求tan∠ACE的值.
【答案】(1)證明見解析(2)證明見解析 (3)
【解析】試題分析:(1)根據旋轉的性質和等腰三角形的性質易得∠BDE=∠BED=75°,根據正方形的性質可得∠ADB=45°,所以∠EDF=30°,在△DEF中,根據三角形的內角和定理可得∠DFE=75°,所以∠DFE=∠DEF,即可得DE=DF ;(2)過點E作EG⊥BD于點G,易證四邊形AOGE是矩形,即可得結論;(3)設EG=x,則BE=BD=AC=2EG=2x, Rt△BEG中,由勾股定理可得BG= ,即可得OG=()x,再由AE=OG即可得結論.
試題解析:
(1)∵BD繞點B逆時針旋轉30°至BE,
∴∠DBE=30°,BD=BE,
∴∠BDE=∠BED==75°
在正方形ABCD中,BD是對角線,
∴∠ADB=45°,
∴∠EDF=75°-45°=30°,
在△DEF中,∠DFE=180°-∠EDF-∠FED
=180°-30°-75°
=75°
∴∠DFE=∠DEF
∴DE=DF
(2)證明:過點E作EG⊥BD于點G,
∵∠DBE=30°
∴EG=
在正方形ABCD中,AC、BD是對角線,
∴AC=BD,OA= ,AC⊥BD
∴EG=OA且EG∥OA
∴四邊形AOGE是平行四邊形,
∴四邊形AOGE是矩形
∴AE∥BD
(3)設EG=x,
則BE=BD=AC=2EG=2x,
Rt△BEG中,BG= ,
∴OG=BG-BO=()x,
在矩形AOGE中,∠EAO=90°
AE=OG=()x
∴tan∠ACE=
科目:初中數學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點,E,F分別為PB,PC的中點,△PEF,△PDC,△PAB的面積分別為S,S1,S2.若S=3,則S1+S2的值為( )
A.24 B.12 C.6 D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小軍和小穎對小區(qū)學生早上上學到校方式進行了調查,小軍將調查結果整理后繪制成如圖條形統計圖,A代表自行車,B代表步行,C代表乘車.
(1)小軍和小穎一共調查了多少人?
(2)小穎想將調查結果繪制成扇形統計圖,求扇形統計圖中C部分對應的扇形的圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經過點A,B,直線l1 , l2交于點C.
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com