結(jié)合所給的閱讀材料,求解問題.
材料:在直角坐標系中,如果有兩點A(a,b),B(a,0),那么稱點B是點A在x軸上的射影.
問題:如圖,測得飛機的運動曲線是雙曲線,飛機在點M的坐標為(-4500
3
,1125),炮彈在點O處沿α角向飛機射擊,在點N處命中目標,此時點N在x軸上的射影坐標為(-2250
3
,0),已知α=30°,炮彈飛行速度為750米/秒.
問:炮彈從發(fā)射到擊中目標用了多少時間?
作NA⊥x軸于點A,
∵點N在x軸上的射影坐標為(-2250
3
,0),
∴OA=2250
3

∵α=30°,
∴ON=OA÷cosα=2250
3
÷
3
2
=4500米,
∵炮彈飛行速度為750米/秒.
∴4500÷750=6秒,
∴炮彈從發(fā)射到擊中目標用了6秒.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=
m
x
的圖象的兩個交點,直線AB與x軸交于點C.
(1)求m和n的值;
(2)求一次函數(shù)的解析式及△AOB的面積;
(3)求不等式kx+b-
m
x
<0
的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,雙曲線y=
k
x
與直線y=mx相交于A、B兩點,M為此雙曲線在第一象限內(nèi)的任一點(M在A點左側(cè)),設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且p=
MB
MQ
q=
MA
MP
,則p-q的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=-x+b與雙曲線y=-
1
x
(x<0)交于點A,與x軸交于點B,則OA2-OB2=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)y=-2x+6的圖象與x軸、y軸分別相交于點A、B,點P在線段AB上,OP(O是坐標原點)將△OAB分成面積為1:2的兩部分,則過點P的反比例函數(shù)解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,△OBA△DOC,邊OA、OC都在x軸的正半軸上,點B的坐標為(6,8),∠BAO=∠OCD=90°,OD=5.反比例函數(shù)y=
k
x
(x>0)
的圖象經(jīng)過點D,交AB邊于點E.
(1)求k的值.
(2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學家帕普斯借助函數(shù)給出一種“三等分銳角”的方法,步驟如下:
①將銳角∠AOB置于平面直角坐標系中,其中以點O為坐標原點,邊OB在x軸上;
②邊OA與函數(shù)y=
1
x
(x>0)
的圖象交于點P,以P為圓心,2倍OP的長為半徑作弧,在∠AOB內(nèi)部交函數(shù)y=
1
x
(x>0)
的圖象于點R;
③過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連結(jié)OM.則∠MOB=
1
3
∠AOB.
請根據(jù)以上材料,完成下列問題:

(1)應(yīng)用上述方法在圖1中畫出∠AOB的三等分線OM;
(2)設(shè)P(a,
1
a
),R(b,
1
b
)
,求直線OM對應(yīng)的函數(shù)表達式(用含a,b的代數(shù)式表示);
(3)證明:∠MOB=
1
3
∠AOB;
(4)應(yīng)用上述方法,請嘗試將圖2所示的鈍角三等分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形OABC的面積為9,點O為坐標原點,點B在函數(shù)y=
k
x
(k>0,x>0)的圖象上,點P(m、n)是函數(shù)y=
k
x
(k>0,x>0)圖象上的一個動點,過點P分別作x軸、y軸的垂線,垂足分別為E、F,并設(shè)兩個四邊形OEPF和OABC不重合部分的面積之和為S.
(1)求B點坐標和k的值;
(2)當S=
9
2
時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一組數(shù)據(jù):x1,x2,x3,…,xn(x1≤x2≤x3≤…≤xn),它們的算術(shù)平均值為10,若去掉其中最大的xn,余下數(shù)據(jù)的算術(shù)平均值為9;若去掉其中最小的x1,余下數(shù)據(jù)的算術(shù)平均值為11.則x1關(guān)于n的表達式為x1=______;xn關(guān)于n的表達式為xn=______.

查看答案和解析>>

同步練習冊答案