如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=
m
x
的圖象的兩個交點,直線AB與x軸交于點C.
(1)求m和n的值;
(2)求一次函數(shù)的解析式及△AOB的面積;
(3)求不等式kx+b-
m
x
<0
的解集(請直接寫出答案).
(1)∵B(2,-4)在函數(shù)y=
m
x
的圖象上,
∴m=-8.
∴反比例函數(shù)的解析式為:y=-
8
x

∵點A(-4,n)在函數(shù)y=-
8
x
的圖象上,
∴n=2;

(2)由(1)得A(-4,2),
∵y=kx+b經(jīng)過A(-4,2),B(2,-4),
-4k+b=2
2k+b=-4

解之得
k=-1
b=-2
,
∴一次函數(shù)的解析式為:y=-x-2,
∵C是直線AB與x軸的交點,
∴當(dāng)y=0時,x=-2,
∴點C(-2,0),
∴OC=2,
∴S△AOB=S△ACO+S△BCO=
1
2
×2×2+
1
2
×2×4
=6;

(3)求不等式kx+b-
m
x
<0
可變?yōu)閗x+b<
m
x
,
即-x-2<-
8
x

根據(jù)函數(shù)圖象可得-4<x<0或x>2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

平行于直線y=x的直線l不經(jīng)過第四象限,且與函數(shù)y=
3
x
(x>0)和圖象交于點A,過點A作AB⊥y軸于點B,AC⊥x軸于點C,四邊形ABOC的周長為8.求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b與雙曲線y=
4
x
在第一象限交于A、B兩點,A點橫坐標(biāo)為1.B點橫坐標(biāo)為4.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象指出不等式kx+b>
4
x
的解集;
(3)點P是x軸正半軸上一個動點,過P點作x軸的垂線分別交直線和雙曲線于M、N,設(shè)P點的橫坐標(biāo)是t(t>0),△OMN的面積為S,求S和t的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小琳、曉明兩人在A、B兩地間各自做勻速跑步訓(xùn)練,他們同時從A地起跑
(1)設(shè)A、B兩地間的路程為s(m),跑完這段路程所用的時間t(s)與相應(yīng)的速度v(m/s)之間的函數(shù)關(guān)系式是______;
(2)在上述問題所涉及的3個量s、v、t中,______是常量,t是______的______比例函數(shù);
(3)已知“A→B”全程200m,小琳和曉明的速度之比為4:5,跑完全程小琳要比曉明多用了8s.求小琳、曉明兩人勻速跑步的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y1=-2x經(jīng)過點P(-2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)y2=
k
x
(k≠0)的圖象上.
(1)求點P′的坐標(biāo);
(2)求反比例函數(shù)的解析式,并說明反比例函數(shù)的增減性;
(3)直接寫出當(dāng)y2<2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點A在反比例函數(shù)y=
2
x
的圖象上,點B,C分別在反比例函數(shù)y=
4
x
的圖象上,且ABx軸,ACy軸,若AB=2AC,則點A的坐標(biāo)為( 。
A.(1,2)B.(2,1)C.(
2
2
D.(3,
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

蓄電池的電壓為定值,使用此電源時,電流I(A)是電阻R(Ω)的反比例函數(shù),其圖象如圖所示,當(dāng)R為10Ω時,電流I是(  )
A.3AB.3.6AC.4AD.6A

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:
若a,b都是非負(fù)實數(shù),則a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時,“=”成立.
證明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時,“=”成立.
舉例應(yīng)用:
已知x>0,求函數(shù)y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.當(dāng)且僅當(dāng)2x=
2
x
,即x=1時,“=”成立.
當(dāng)x=1時,函數(shù)取得最小值,y最小=4.
問題解決:
汽車的經(jīng)濟(jì)時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟(jì)時速及經(jīng)濟(jì)時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

結(jié)合所給的閱讀材料,求解問題.
材料:在直角坐標(biāo)系中,如果有兩點A(a,b),B(a,0),那么稱點B是點A在x軸上的射影.
問題:如圖,測得飛機(jī)的運動曲線是雙曲線,飛機(jī)在點M的坐標(biāo)為(-4500
3
,1125),炮彈在點O處沿α角向飛機(jī)射擊,在點N處命中目標(biāo),此時點N在x軸上的射影坐標(biāo)為(-2250
3
,0),已知α=30°,炮彈飛行速度為750米/秒.
問:炮彈從發(fā)射到擊中目標(biāo)用了多少時間?

查看答案和解析>>

同步練習(xí)冊答案