【題目】計算與化簡
(1)-18+21+(-13)
(2)-81÷×÷(-16)
(3)(+-)×(-24)
(4)-22-×[4-(-3)2]
(5)化簡:5(3x2y-xy2)-4(-xy2+2x2y)
(6)先化簡,再求值:-x+2(x-y2) - (-x+y2);其中x=2,y=.
【答案】(1)-10;(2) 1 ;(3)-18 ;(4)-2 ; (5) 7x2y—xy2; (6) 3x—y2 ,5
【解析】
(1)根據(jù)有理數(shù)的加減運算法則計算即可得出答案;
(2)根據(jù)有理數(shù)的乘除運算法則計算即可得出答案;
(3)先去括號,再根據(jù)有理數(shù)的四則運算法則計算即可得出答案;
(4)先算乘方,再根據(jù)有理數(shù)的四則運算法則計算即可得出答案;
(5)先去括號,再根據(jù)整式的加減運算法則計算即可得出答案;
(6)先去括號,再利用整式的加減運算法則化簡,最后將x和y的值代入計算即可得出答案.
(1)解:原式=-18+21-13
=-31+21
=-10.
(2)解:原式=
= 1
(3)解:原式=
=-18
(4)解:原式=-4-×﹙4-9﹚
=-4-×﹙-5﹚
=-4+2
=-2
(5) 解:原式=
= 7x2y—xy2
(6) 解:原式=
=3x—y2
當=2,=時,
原式=3×2-(-1)2
=5
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)經(jīng)過點A(2,0),點B(3,3),BC⊥x軸于點C,連接OB,等腰直角三角形DEF的斜邊EF在x軸上,點E的坐標為(﹣4,0),點F與原點重合
(1)求拋物線的解析式并直接寫出它的對稱軸;
(2)△DEF以每秒1個單位長度的速度沿x軸正方向移動,運動時間為t秒,當點D落在BC邊上時停止運動,設△DEF與△OBC的重疊部分的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式;
(3)點P是拋物線對稱軸上一點,當△ABP是直角三角形時,請直接寫出所有符合條件的點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù),在每個象限內(nèi)y隨著x的增大而增大,點P(a-1, 2)在這個反比例函數(shù)上,a的值可以是()
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是直線AB上的一點,OD⊥OC,過點O作射線OE平分∠BOC.
(1)如圖1,如果∠AOC=50°,依題意補全圖形,寫出求∠DOE度數(shù)的思路(不需要寫出完整的推理過程);
(2)當OD繞點O順時針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,依題意補全圖形,并求∠DOE的度數(shù)(用含α的代數(shù)式表示);
(3)當OD繞點O繼續(xù)順時針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之間有怎樣的數(shù)量關(guān)系?請直接寫出你的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設,,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩站相距480千米,一輛快車從甲站出發(fā),每小時行駛120千米,一輛慢車從乙站出發(fā),每小時行駛80千米.
(1)兩車同時開出,相向而行,多少小時后兩車相遇?
(2)兩車同時開出,相向而行,多少小時后兩車相距100千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點分別是的中點,則下列四個判斷中不一定正確的是()
A. 四邊形一定是平行四邊形
B. 若,則四邊形是矩形
C. 若四邊形是菱形,則是等邊三角形
D. 若四邊形是正方形,則是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生平均每天的課外做作業(yè)的時間情況,隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查的結(jié)果分為A、B、C、D四個等級(設做作業(yè)時間為t小時,A:t<1;B:1≤t<1.5;C:1.5≤t<2;D:t≥2)根據(jù)調(diào)查結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查中,抽取的學生人數(shù)是 ;
(2)圖2中α的度數(shù)是 ,并補全圖1條形統(tǒng)計圖;
(3)該校共有2800名學生名,請估計作業(yè)時間不少于2小時的人數(shù)為 ;
(4)在此次調(diào)查中,甲班有2人平均每天的作業(yè)時間超過2小時,乙班有3名學生平均每天作業(yè)時間超過2小時,現(xiàn)從這5人中選取2人參加座談會,請用樹狀圖或列表的方法,求出“所選的2人來自不同班級”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com