如圖a,ABCD是一矩形紙片,AB=6cm,AD=8cm,E是AD上一點,且AE=6cm.操作:(1)將AB向AE折過去,使AB與AE重合,得折痕AF,如圖b;(2)將△AFB以BF為折痕向右折過去,得圖c.則△GFC的面積是


  1. A.
    1cm2
  2. B.
    2cm2
  3. C.
    3cm2
  4. D.
    4cm2
B
分析:由翻折變換可知,AB=BF,又知∠BAF=∠AFC,在Rt△FCG中,解得CG,求出△GFC的面積.
解答:由題意可知,
AB=BF,∠BAF=∠AFC=45°,
又知AB=6cm,AD=8cm,E是AD上一點,且AE=6cm,
故FC=2,
在Rt△FCG中,
CG=FC=2,
故△GFC的面積=CG×FC=2,
故選B.
點評:本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,四邊形ABCD是一防洪堤壩的橫截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,問AD與BC是否相等?說明你的理由.
解:在△ADE和△BCF中,
∠D=∠C(     )
∠AED=∠(     )(垂直的意義)
AE=BF(     )

[答案:括號中應依次填上:
 
,
 
,
 
]
∴△ADE≌△BCF(
 

∴AD=BC(
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州一模)如圖①是矩形包書紙的示意圖,虛線是折痕,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.
(1)現(xiàn)有一本書長為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書方式,并且折疊進去的寬度是3cm,則需要包書紙的長和寬分別為多少?(請直接寫出答案).
(2)已知數(shù)學課本長為26cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2 的矩形包書紙按如圖①包好了這本書,求折進去的寬度.
(3)如圖②,矩形ABCD是一張一個角(△AEF)被污損的包書紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒有污損的部分包一本長為19,寬為16,厚為6的字典,小紅認為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典.設PM=x,矩形PGCH的面積為y,當x取何值時y最大?并由此判斷小紅的想法是否可行.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是一位師傅用地板磚鋪設地板尚未完工的地板圖形,為了節(jié)省材料,他準備在剩余的六塊磚中(如圖22-2所示①②③④⑤⑥)挑選若干塊進行鋪設,請你在下列網格紙上幫他設計3種不同的鋪法示意圖.
(在圖上畫出分割線,標上地磚序號即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是一張矩形紙片,AB=6,AD=8,在AB上取一點E,將紙片沿DE翻折,使點A落在BD上的點F處,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是一防洪堤壩的橫截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,問AD與BC是否相等?說明你的理由.
解:在△ADE和△BCF中,
∠D=∠C()
∠AED=∠()(垂直的意義)
AE=BF()

∴△ADE≌△BCF  (
AAS
AAS
 )
∴AD=BC   (
全等三角形對應邊相等
全等三角形對應邊相等

查看答案和解析>>

同步練習冊答案