【題目】如圖,AB是半圓O的直徑,C是AB延長線上的點,AC的垂直平分線交半圓于點D,交AC于點E,連接DA,DC.已知半圓O的半徑為3,BC=2.
(1)求AD的長.
(2)點P是線段AC上一動點,連接DP,作∠DPF=∠DAC,PF交線段CD于點F.當△DPF為等腰三角形時,求AP的長.
【答案】(1)AD=2;(2)當△DPF是等腰三角形時,AP的長為0或5或8﹣2.
【解析】
(1)先求出AC,進而求出AE=4,再用勾股定理求出DE即可得出結(jié)論;
(2)分三種情況,利用相似三角形得出比例式,即可得出結(jié)論
(1)如圖1,連接OD,
∵OA=OD=3,BC=2,
∴AC=8,
∵DE是AC的垂直平分線,
∴AE=AC=4,
∴OE=AE﹣OA=1,
在Rt△ODE中,DE= =2 ;
在Rt△ADE中,AD==2;
(2)當DP=DF時,如圖2,
點P與A重合,F與C重合,則AP=0;
當DP=PF時,如圖4,
∴∠CDP=∠PFD,
∵DE是AC的垂直平分線,∠DPF=∠DAC,
∴∠DPF=∠C,
∵∠PDF=∠CDP,
∴△PDF∽△CDP,
∴∠DFP=∠DPC,
∴∠CDP=∠CPD,
∴CP=CD,
∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;
當PF=DF時,如圖3,
∴∠FDP=∠FPD,
∵∠DPF=∠DAC=∠C,
∴△DAC∽△PDC,
∴ ,
∴,
∴AP=5,
即:當△DPF是等腰三角形時,AP的長為0或5或8﹣2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 O 是△ABC 的邊 AB 上一點,以 OB 為半徑的⊙O 交 BC 于點 D,過點 D 的切線交 AC 于點 E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當點 O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時, 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為5,△ABC是⊙O的內(nèi)接三角形,AB=8.AD和過點B的切線互相垂直,垂足為D.
(1)求證:∠BAD+∠C=90°;
(2)求線段AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為多少m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,斜坡AB長130米,坡度i=1:2.4,BC⊥AC,
(1)BC= m,AC= m;
(2)現(xiàn)在計劃在斜坡AB的中點D處挖去部分坡體修建一個平行于水平線CA的平臺DE和一條新的斜坡BE,若斜坡BE的坡角為30°,求平臺DE的長;(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com