【題目】定義:數學活動課上,陳老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形.
理解:(1)如圖1,已知A、B、C在格點(小正方形的頂點)上,請在方格圖中畫出以格點為頂點,AB、BC為邊的兩個對等四邊形ABCD;
應用:(2)如圖2,在Rt△PBC中,∠PCB=90°,BC=9,點A在BP邊上,且AB=13.AD⊥PC,CD=12,若PC上存在符合條件的點M,使四邊形ABCM為對等四邊形,求出CM的長.
科目:初中數學 來源: 題型:
【題目】閱讀下列材料并解決有關問題.
我們知道,|x|=.現在我們可以用這一結論來化簡含有絕對值的代數式,如化簡代數式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數范圍內,零點值x=-1和x=2可將全體實數分成不重復且不遺漏的如下3種情況:
(1)x<-1;
(2)-1≤x<2;
(3)x≥2.
從而化簡代數式|x+1|+|x-2|可分以下3種情況:
(1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當-1≤x<2時,原式=x+1-(x-2)=3;
(3)當x≥2時,原式=x+1+x-2=2x-1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x+3|和|x-5|的零點值;
(2)化簡|x+3|+|x-5|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E是線段AD上的任意一點(E與A,D不重合),G,F,H分別是BE,BC,CE的中點.
(1)證明四邊形EGFH是平行四邊形;(2)若EF⊥BC,且EF=BC,證明平行四邊形EGFH是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小慧根據學習函數的經驗,對函數y=|x﹣1|的圖象與性質進行了探究.下面是小慧的探究過程,請補充完成:
(1)函數y=|x﹣1|的自變量x的取值范圍是 ;
(2)列表,找出y與x的幾組對應值.
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | b | 1 | 0 | 1 | 2 | … |
其中,b= ;
(3)在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點,并畫出該函數的圖象;
(4)寫出該函數的一條性質: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一條小船沿直線向碼頭勻速前進.在0min ,2min,4min,6min時,測得小船與碼頭的距離分別為200m,150m,100m,50m.小船與碼頭的距離是時間的函數嗎?如果是,寫出函數的解析式,并畫出函數圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線經過A,B,C三點.
(1)求拋物線的解析式。
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】①若,則;②整數和分數統(tǒng)稱為有理數;③絕對值等于它本身的整數是0;④是二次三項式;⑤幾個有理數相乘,當負因數的個數是奇數時,積一定為負數,其中判斷正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(﹣4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應點為A′,點B的對應點為B′,點C(﹣2,0)和點D(﹣4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數解析式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com