【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的△DEF

2)若連接AD、CF,則這兩條線段之間的關(guān)系是      

3)畫出△ABCBC邊上的高AM。

4)滿足三角形ACP的面積等于三角形ACB的面積的格點(diǎn)P 個(gè)(不和B重合)

【答案】(1)詳見(jiàn)解析;(2)平行且相等;(3)詳見(jiàn)解析;(44.

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)BC平移后的對(duì)應(yīng)點(diǎn)E、F的位置,然后與點(diǎn)D順次連接即可;
2)根據(jù)平移的性質(zhì),對(duì)應(yīng)點(diǎn)的連線平行且相等;

3)根據(jù)網(wǎng)格結(jié)構(gòu)和三角形的高線的定義作出圖形即可;

4)過(guò)BAC的平行線,過(guò)DAC的平行線,即可得出格點(diǎn)P4個(gè).

1 如圖:

2)根據(jù)平移的性質(zhì),對(duì)應(yīng)點(diǎn)的連線平行且相等平行且相等;

3)根據(jù)網(wǎng)格結(jié)構(gòu)和三角形的高線的定義作出圖形,如圖:

4

如圖,過(guò)BAC的平行線,過(guò)DAC的平行線,
當(dāng)點(diǎn)P在點(diǎn)P1,點(diǎn)P2,點(diǎn)P3,點(diǎn)P4處時(shí),存在SACB=SACP,
∴格點(diǎn)P4個(gè).
故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在五一期間組織學(xué)生外出旅游,如果單獨(dú)租用45座的客車若干輛,恰好坐滿;如果單獨(dú)租用60座的客車,可少租一輛,并且余30個(gè)座位.

(1)求外出旅游的學(xué)生人數(shù)是多少,單租45座的客車需多少輛?

(2)已知45座的客車每輛租金250元,60座的客車每輛租金300元,為節(jié)省租金,并且保證每個(gè)學(xué)生都有座,決定同時(shí)租用兩種客車,使得租車總數(shù)比單租45座的客車少一輛,問(wèn)45座的客車和60座的客車分別租多少輛才能使得租金最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:

如圖1,ABC,B=2C,ADBC于點(diǎn)D,求證:BC=AB+2BD.

小明利用條件ADBC,CD上截取DH=BD,如圖2,連接AH,既構(gòu)造了等腰ABH,又得到BH=2BD,從而命題得證。

(1)根據(jù)閱讀材料,證明:BC=AB+2BD;

(2)參考小明的方法,解決下面的問(wèn)題:

如圖3,ABC,BAC=90°,ABD=BCE,ABC=DCE,請(qǐng)?zhí)骄?/span>ADBE的數(shù)量關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)先化簡(jiǎn),再求值:(x-3)2+2(x-2)(x+7)-(x+2)(x-2);其中x2+2x-3=0

2)已知,求: 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1 ,
(2)點(diǎn)C1的坐標(biāo)是
(3)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2
(4)使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某建筑物BC的高度,小明先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測(cè)得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請(qǐng)你計(jì)算出該建筑物BC的高度.(取 =1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南博汽車城銷售某種型號(hào)的汽車,每輛進(jìn)貨價(jià)為25萬(wàn)元,市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為29萬(wàn)元時(shí),平均每周能售出8輛,而當(dāng)銷售價(jià)每降低0.5萬(wàn)元時(shí),平均每周能多售出4輛.如果設(shè)每輛汽車降價(jià)x萬(wàn)元,每輛汽車的銷售利潤(rùn)為y萬(wàn)元.(銷售利潤(rùn)=銷售價(jià)﹣進(jìn)貨價(jià))

(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤(rùn)為z萬(wàn)元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價(jià)為多少萬(wàn)元時(shí),平均每周的銷售利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.

(1)求證:AE為⊙O的切線;
(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;
(3)在(2)的條件下,求線段BG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案