【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:∠AOB
尺規(guī)作圖:做一個(gè)角等于已知角
已知:∠AOB
求做:一個(gè)角,使它等于∠AOB
小強(qiáng)的作法如下:
① 作射線O′A'
② 以O(shè)為圓心,任意長為半徑作弧,交OA于C,交OB于D
③ 以O(shè)′為圓心,OC為半徑作弧C′E′, 交弧O′A′于C′
④ 以C′為圓心,CD為半徑作弧, 交弧C′E′于D′
⑤過點(diǎn)D′作射線O′B′
所以∠A′O′B′就是所求的角
老師說:“小強(qiáng)的作法正確.”
請回答:小強(qiáng)用直尺和圓規(guī)作圖∠A′O′B′=∠AOB,根據(jù)三角形全等的判定方法中的 ,
得出△D′O′C′≌△DOC,才能證明∠A′O′B′=∠AOB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,高AD和BE交于點(diǎn)H,且BH=AC,則∠ABC的度數(shù)是( )
A.30°
B.45°
C.60°
D.30°或45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有兩個(gè)全等的直角三角形△ABC和△EDF,∠ACB=∠F=90°,∠A=∠E=30°,點(diǎn)D在邊AB上,且AD=BD=CD.△EDF繞著點(diǎn)D旋轉(zhuǎn),邊DE,DF分別交邊AC于點(diǎn)M,K.
(1)如圖2、圖3,當(dāng)∠CDF=0°或60°時(shí),AM+CKMK(填“>”,“<”或“=”),你的依據(jù)是;
(2)如圖4,當(dāng)∠CDF=30°時(shí),AM+CKMK(填“>”或“<”);
(3)猜想:如圖1,當(dāng)0°<∠CDF<60°時(shí),AM+CKMK,試證明你的猜想..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的個(gè)數(shù)有( )
①帶根號的數(shù)都是無理數(shù); ②立方根等于它本身的數(shù)有兩個(gè),是0和1;
③0.01是0.1的算術(shù)平方根; ④有且只有一條直線與已知直線垂直
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張比例尺為1:2000的學(xué)校平面圖上,操場的長度為4cm,則此操場的實(shí)際長度為
______________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=60°,∠ABC,∠ACB所對的邊b,c滿足:b +c -4(b+c)+8=0.
(1)證明:△ABC是邊長為2的等邊三角形.
(2)若 b,c兩邊上的中線BD,CE交于點(diǎn)O,求OD:OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時(shí)間為x(分鐘).據(jù)了解,該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com